rmeireles commited on
Commit
1ac8bde
·
1 Parent(s): f65ba29

Primeiro commit da unidade 01

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.05 +/- 17.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff4455305e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff445530670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff445530700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff445530790>", "_build": "<function ActorCriticPolicy._build at 0x7ff445530820>", "forward": "<function ActorCriticPolicy.forward at 0x7ff4455308b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff445530940>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff4455309d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff445530a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff445530af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff445530b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff445529a20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673231822779385523, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2zeT2Fw5C5NhOtvR7jJT0N2wk61EkNvgAAgD8AAIA/bYUNPp4Nej9cW8s+B9sjv3cKSD41Qnc+AAAAAAAAAADNxB2+dlM8vEYMZryxzda6xJefPc2msDsAAIA/AACAP3qhLz6OtYq8qhm2unGaojlqT+69kJ8lOgAAgD8AAIA/IJtcPp+zzTwecHy6/qsCuXUoZD5pBMC5AACAPwAAgD8APIc7KkCkP5Ip8Dvixwm/NE5KvNZIFz0AAAAAAAAAAE1vQ76fM9s8jCg0Ol6G7bitcHa+8gKJuQAAgD8AAIA/gMYjPrbcYLyrxPA7YP6Fupjk4r0dL1m7AACAPwAAgD8A6EO7wh2wPxIcMr3qfpq+WU9jvHuI6LwAAAAAAAAAAM3fiz76rgE/DswbPrZ39b5UAjk+b42UvQAAAAAAAAAAmkNZvNAHqT/VOAC+EV//vkrGWLyw9u+5AAAAAAAAAADmbES+W5KCvMMSOTtwqXU5L/P2PfbHaLoAAIA/AACAPyDyVT6xH2c+WwaEvuZdob55/DI7GsEpvgAAAAAAAAAAs6+nvSklDj64HQQ+bZ9zvjsf1Dz6vkQ9AAAAAAAAAABgdgk+Q/EVvFqhzTzcEE484D6HvLChUr0AAIA/AACAP2sEp74BLVg+tah8Pm2wqb493YU8GQePPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGY7nM6C6TECUhpRSlIwBbJRLhIwBdJRHQKDNThx5s0p1fZQoaAZoCWgPQwgm/5O/e9puQJSGlFKUaBVLy2gWR0CgzZkj5bhWdX2UKGgGaAloD0MI1jcwuVGBbkCUhpRSlGgVS75oFkdAoM3QT9KmK3V9lChoBmgJaA9DCIzZklURSHBAlIaUUpRoFUuqaBZHQKEEYNOM2m51fZQoaAZoCWgPQwhdiqvKvjNhQJSGlFKUaBVN6ANoFkdAoQUgMH8jzXV9lChoBmgJaA9DCA7z5QVYk3BAlIaUUpRoFUvTaBZHQKEFe2jO9nN1fZQoaAZoCWgPQwi1No3tNVluQJSGlFKUaBVNWAFoFkdAoQYPqu8sc3V9lChoBmgJaA9DCDbknxnEk19AlIaUUpRoFU3oA2gWR0ChBjInjQzDdX2UKGgGaAloD0MI2GX4TzfKcUCUhpRSlGgVS8NoFkdAoQbdI5HVgHV9lChoBmgJaA9DCPIolfAEMW9AlIaUUpRoFUvIaBZHQKEHN5GjKxN1fZQoaAZoCWgPQwjY1eQpqzlyQJSGlFKUaBVL7mgWR0ChB1pLmITHdX2UKGgGaAloD0MIda+T+jLeb0CUhpRSlGgVS8doFkdAoQdjyc0+DHV9lChoBmgJaA9DCAa7Ydsi6G1AlIaUUpRoFUueaBZHQKEKJ+DvmYB1fZQoaAZoCWgPQwiCHmrbMB5wQJSGlFKUaBVL1GgWR0ChCkhx5s0pdX2UKGgGaAloD0MIKnPzjej/ZUCUhpRSlGgVTegDaBZHQKEK8ukDZDl1fZQoaAZoCWgPQwh07na9tEhhQJSGlFKUaBVN6ANoFkdAoQsxKBd2PnV9lChoBmgJaA9DCO91Ul+WJ3BAlIaUUpRoFUvyaBZHQKELndepn6F1fZQoaAZoCWgPQwjCNAwfUUhxQJSGlFKUaBVL3GgWR0ChC7/aYeDGdX2UKGgGaAloD0MINNsV+uB3YkCUhpRSlGgVTegDaBZHQKEMUN/e+Eh1fZQoaAZoCWgPQwi3s688CFJyQJSGlFKUaBVLtmgWR0ChDIXUH6dldX2UKGgGaAloD0MI2AsFbIdyYkCUhpRSlGgVTegDaBZHQKEMwb2Dg651fZQoaAZoCWgPQwhxV68iY3xwQJSGlFKUaBVL1WgWR0ChDTk+xGDudX2UKGgGaAloD0MI2H+dm/ZCckCUhpRSlGgVS9RoFkdAoQ1luR9w33V9lChoBmgJaA9DCP8iaMykfnFAlIaUUpRoFUufaBZHQKEOi3XqZ+h1fZQoaAZoCWgPQwhjQWFQ5lFwQJSGlFKUaBVLzGgWR0ChD+ahYeT3dX2UKGgGaAloD0MI/Ul87kQMcUCUhpRSlGgVS55oFkdAoRAPtMPBi3V9lChoBmgJaA9DCOs56X1j63JAlIaUUpRoFUu6aBZHQKEQRQBxPwd1fZQoaAZoCWgPQwj2fM1y2XxxQJSGlFKUaBVLy2gWR0ChEHsbvPTodX2UKGgGaAloD0MIXHfzVAeIbkCUhpRSlGgVS6doFkdAoRE6IcinpHV9lChoBmgJaA9DCJjbvdwnzXFAlIaUUpRoFUvRaBZHQKERUJOWSlp1fZQoaAZoCWgPQwgHmzqPSj9wQJSGlFKUaBVLzGgWR0ChEaXjuKGddX2UKGgGaAloD0MI4bIKm0HMcUCUhpRSlGgVS8poFkdAoRI3K8tf5XV9lChoBmgJaA9DCEZ8J2Y9im5AlIaUUpRoFUu9aBZHQKES6zLwF1V1fZQoaAZoCWgPQwioHmlwG8VxQJSGlFKUaBVLsmgWR0ChE6PBzmwJdX2UKGgGaAloD0MIzqeOVUozckCUhpRSlGgVTR0BaBZHQKET4xUvPC51fZQoaAZoCWgPQwjysFBr2tZwQJSGlFKUaBVLtmgWR0ChFCmjsUqQdX2UKGgGaAloD0MI+l+uRUsfcUCUhpRSlGgVS8ZoFkdAoRQolF+d9XV9lChoBmgJaA9DCL68APuobHFAlIaUUpRoFUuraBZHQKEUd1DBuXN1fZQoaAZoCWgPQwhbJy7Hq4BxQJSGlFKUaBVL32gWR0ChFM6dlNDddX2UKGgGaAloD0MIWHGqtbDncECUhpRSlGgVS71oFkdAoRTjjtG/e3V9lChoBmgJaA9DCOW0p+QccWFAlIaUUpRoFU3oA2gWR0ChFVgccU/OdX2UKGgGaAloD0MIU5W2uAb6cUCUhpRSlGgVS6VoFkdAoRVepKjBVXV9lChoBmgJaA9DCCl5dY6BvWJAlIaUUpRoFU3oA2gWR0ChFZFl05lwdX2UKGgGaAloD0MIyO4CJYWQbkCUhpRSlGgVS89oFkdAoRWUjkdWAHV9lChoBmgJaA9DCP2H9NvXdnBAlIaUUpRoFUvEaBZHQKEWhnQID5l1fZQoaAZoCWgPQwjJIeLmVHZhQJSGlFKUaBVN6ANoFkdAoRaHQnhKlHV9lChoBmgJaA9DCNyhYTGqIXBAlIaUUpRoFUvMaBZHQKEXQM1CPZJ1fZQoaAZoCWgPQwjk9PV8zTZyQJSGlFKUaBVLyGgWR0ChF2FE7W/bdX2UKGgGaAloD0MIf2399F86cUCUhpRSlGgVS8loFkdAoReXvfCQ93V9lChoBmgJaA9DCEOQgxJmLm1AlIaUUpRoFUu8aBZHQKEX/f779AJ1fZQoaAZoCWgPQwhTCOQSB2JyQJSGlFKUaBVLwGgWR0ChGHEuQIUrdX2UKGgGaAloD0MIpYXLKqyVcECUhpRSlGgVS8NoFkdAoRi1y1eBx3V9lChoBmgJaA9DCDRlpx+U/HFAlIaUUpRoFU0yAWgWR0ChGaaAWi1zdX2UKGgGaAloD0MIA7NCkW4Hc0CUhpRSlGgVTQsBaBZHQKEZymEXcg11fZQoaAZoCWgPQwhNgczOogBzQJSGlFKUaBVNDgFoFkdAoRoQ9HMEBHV9lChoBmgJaA9DCFrxDYVPyG9AlIaUUpRoFUvWaBZHQKEaGOyVv/B1fZQoaAZoCWgPQwiHNgAbEC5mQJSGlFKUaBVN6ANoFkdAoRod9Ujs2XV9lChoBmgJaA9DCBFxcypZd3JAlIaUUpRoFUvkaBZHQKEaUKohpxp1fZQoaAZoCWgPQwhAS1ewTSNwQJSGlFKUaBVLqGgWR0ChGnUmD15CdX2UKGgGaAloD0MIzR39L5focECUhpRSlGgVS8VoFkdAoRqKnJkoW3V9lChoBmgJaA9DCF+Zt+o66XBAlIaUUpRoFUvnaBZHQKEbQMNMGot1fZQoaAZoCWgPQwi4PNaMTOByQJSGlFKUaBVLxmgWR0ChG1dy1eBydX2UKGgGaAloD0MICp+tg4PQYUCUhpRSlGgVTegDaBZHQKEb+1WsA/91fZQoaAZoCWgPQwhfsvFgS7pwQJSGlFKUaBVLsWgWR0ChHKbj94u9dX2UKGgGaAloD0MIJZASuzaxcUCUhpRSlGgVS/toFkdAoRzdqSHM2XV9lChoBmgJaA9DCP1NKESAY3BAlIaUUpRoFUu7aBZHQKEdHmfXf651fZQoaAZoCWgPQwg/V1uxv9pwQJSGlFKUaBVL7WgWR0ChHfkNvwVkdX2UKGgGaAloD0MISUxQw/c/ckCUhpRSlGgVS91oFkdAoR48aOxSpHV9lChoBmgJaA9DCJepSfAGx3FAlIaUUpRoFU0UAWgWR0ChHwE4WDYidX2UKGgGaAloD0MIpRMJppp3cECUhpRSlGgVTQwBaBZHQKEfBe54GEB1fZQoaAZoCWgPQwiR8/4/TohyQJSGlFKUaBVL4WgWR0ChHzqTKT0QdX2UKGgGaAloD0MIOq+xS9TTcECUhpRSlGgVS8toFkdAoR+QzN2TxHV9lChoBmgJaA9DCOoihbLwA2NAlIaUUpRoFU3oA2gWR0ChH51FQVKxdX2UKGgGaAloD0MIEyujkc+ycECUhpRSlGgVS89oFkdAoSCbwMH8j3V9lChoBmgJaA9DCCKI83CCbHBAlIaUUpRoFUvGaBZHQKEgtsO5J9R1fZQoaAZoCWgPQwhEh8CRAHhwQJSGlFKUaBVLs2gWR0ChIUMQEpy7dX2UKGgGaAloD0MIINRFCmWWckCUhpRSlGgVS+loFkdAoSN8YAKfF3V9lChoBmgJaA9DCO2ePCwU53BAlIaUUpRoFUvMaBZHQKEjl20Re1N1fZQoaAZoCWgPQwhEozuI3aRyQJSGlFKUaBVL/2gWR0ChI/bPY4ACdX2UKGgGaAloD0MIGjbK+g2scUCUhpRSlGgVS/RoFkdAoSP+eSSvDHV9lChoBmgJaA9DCCXJc33fXXFAlIaUUpRoFUu8aBZHQKEkn/wRXfZ1fZQoaAZoCWgPQwgcCMkCpoNyQJSGlFKUaBVLz2gWR0ChJOwokRjCdX2UKGgGaAloD0MIEjElkugrckCUhpRSlGgVS91oFkdAoSX4raufVnV9lChoBmgJaA9DCCodrP9zVmJAlIaUUpRoFU3oA2gWR0ChJmLSuyNXdX2UKGgGaAloD0MI2bW93RKlb0CUhpRSlGgVTVIBaBZHQKEmgM2m52B1fZQoaAZoCWgPQwiQTfIjfqdgQJSGlFKUaBVN6ANoFkdAoScLF+/gznV9lChoBmgJaA9DCC+i7Zg6iHBAlIaUUpRoFUuqaBZHQKEnL/CqIad1fZQoaAZoCWgPQwilgoqq31hwQJSGlFKUaBVLp2gWR0ChJ4SU9pyqdX2UKGgGaAloD0MIRQ98DFaQcECUhpRSlGgVS8hoFkdAoSjCMglniHV9lChoBmgJaA9DCDI4Sl4dRnFAlIaUUpRoFUvxaBZHQKEpBio86mx1fZQoaAZoCWgPQwitpYC0PypxQJSGlFKUaBVL12gWR0ChKVv99+gEdX2UKGgGaAloD0MI9l/npk36cECUhpRSlGgVS9xoFkdAoSqIFqzqr3V9lChoBmgJaA9DCPJAZJEmN29AlIaUUpRoFUuwaBZHQKEqrOnEVFh1fZQoaAZoCWgPQwiwq8lTFtBwQJSGlFKUaBVLwGgWR0ChK48h1TzedX2UKGgGaAloD0MIOXzSiQS8ZECUhpRSlGgVTegDaBZHQKEroU0vXbx1fZQoaAZoCWgPQwjcoPZbu1BxQJSGlFKUaBVL82gWR0ChLEGRvFWGdX2UKGgGaAloD0MIkSdJ10y3ZUCUhpRSlGgVTegDaBZHQKEtFT5wfhd1fZQoaAZoCWgPQwje40wTtsduQJSGlFKUaBVLuWgWR0ChLU4HHFP0dX2UKGgGaAloD0MIHqZ9c/8iYUCUhpRSlGgVTegDaBZHQKEtg9LYf4h1fZQoaAZoCWgPQwg7qMR1DG9xQJSGlFKUaBVL5GgWR0ChLZntOVPfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
model_2e5.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc41ef08da822ea2dd7a8cc798b0505cbdee39164fb0ae2c3a21364a93418b6a
3
+ size 147117
model_2e5/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
model_2e5/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff4455305e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff445530670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff445530700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff445530790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff445530820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff4455308b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff445530940>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff4455309d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff445530a60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff445530af0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff445530b80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff445529a20>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673231822779385523,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2zeT2Fw5C5NhOtvR7jJT0N2wk61EkNvgAAgD8AAIA/bYUNPp4Nej9cW8s+B9sjv3cKSD41Qnc+AAAAAAAAAADNxB2+dlM8vEYMZryxzda6xJefPc2msDsAAIA/AACAP3qhLz6OtYq8qhm2unGaojlqT+69kJ8lOgAAgD8AAIA/IJtcPp+zzTwecHy6/qsCuXUoZD5pBMC5AACAPwAAgD8APIc7KkCkP5Ip8Dvixwm/NE5KvNZIFz0AAAAAAAAAAE1vQ76fM9s8jCg0Ol6G7bitcHa+8gKJuQAAgD8AAIA/gMYjPrbcYLyrxPA7YP6Fupjk4r0dL1m7AACAPwAAgD8A6EO7wh2wPxIcMr3qfpq+WU9jvHuI6LwAAAAAAAAAAM3fiz76rgE/DswbPrZ39b5UAjk+b42UvQAAAAAAAAAAmkNZvNAHqT/VOAC+EV//vkrGWLyw9u+5AAAAAAAAAADmbES+W5KCvMMSOTtwqXU5L/P2PfbHaLoAAIA/AACAPyDyVT6xH2c+WwaEvuZdob55/DI7GsEpvgAAAAAAAAAAs6+nvSklDj64HQQ+bZ9zvjsf1Dz6vkQ9AAAAAAAAAABgdgk+Q/EVvFqhzTzcEE484D6HvLChUr0AAIA/AACAP2sEp74BLVg+tah8Pm2wqb493YU8GQePPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVNhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGY7nM6C6TECUhpRSlIwBbJRLhIwBdJRHQKDNThx5s0p1fZQoaAZoCWgPQwgm/5O/e9puQJSGlFKUaBVLy2gWR0CgzZkj5bhWdX2UKGgGaAloD0MI1jcwuVGBbkCUhpRSlGgVS75oFkdAoM3QT9KmK3V9lChoBmgJaA9DCIzZklURSHBAlIaUUpRoFUuqaBZHQKEEYNOM2m51fZQoaAZoCWgPQwhdiqvKvjNhQJSGlFKUaBVN6ANoFkdAoQUgMH8jzXV9lChoBmgJaA9DCA7z5QVYk3BAlIaUUpRoFUvTaBZHQKEFe2jO9nN1fZQoaAZoCWgPQwi1No3tNVluQJSGlFKUaBVNWAFoFkdAoQYPqu8sc3V9lChoBmgJaA9DCDbknxnEk19AlIaUUpRoFU3oA2gWR0ChBjInjQzDdX2UKGgGaAloD0MI2GX4TzfKcUCUhpRSlGgVS8NoFkdAoQbdI5HVgHV9lChoBmgJaA9DCPIolfAEMW9AlIaUUpRoFUvIaBZHQKEHN5GjKxN1fZQoaAZoCWgPQwjY1eQpqzlyQJSGlFKUaBVL7mgWR0ChB1pLmITHdX2UKGgGaAloD0MIda+T+jLeb0CUhpRSlGgVS8doFkdAoQdjyc0+DHV9lChoBmgJaA9DCAa7Ydsi6G1AlIaUUpRoFUueaBZHQKEKJ+DvmYB1fZQoaAZoCWgPQwiCHmrbMB5wQJSGlFKUaBVL1GgWR0ChCkhx5s0pdX2UKGgGaAloD0MIKnPzjej/ZUCUhpRSlGgVTegDaBZHQKEK8ukDZDl1fZQoaAZoCWgPQwh07na9tEhhQJSGlFKUaBVN6ANoFkdAoQsxKBd2PnV9lChoBmgJaA9DCO91Ul+WJ3BAlIaUUpRoFUvyaBZHQKELndepn6F1fZQoaAZoCWgPQwjCNAwfUUhxQJSGlFKUaBVL3GgWR0ChC7/aYeDGdX2UKGgGaAloD0MINNsV+uB3YkCUhpRSlGgVTegDaBZHQKEMUN/e+Eh1fZQoaAZoCWgPQwi3s688CFJyQJSGlFKUaBVLtmgWR0ChDIXUH6dldX2UKGgGaAloD0MI2AsFbIdyYkCUhpRSlGgVTegDaBZHQKEMwb2Dg651fZQoaAZoCWgPQwhxV68iY3xwQJSGlFKUaBVL1WgWR0ChDTk+xGDudX2UKGgGaAloD0MI2H+dm/ZCckCUhpRSlGgVS9RoFkdAoQ1luR9w33V9lChoBmgJaA9DCP8iaMykfnFAlIaUUpRoFUufaBZHQKEOi3XqZ+h1fZQoaAZoCWgPQwhjQWFQ5lFwQJSGlFKUaBVLzGgWR0ChD+ahYeT3dX2UKGgGaAloD0MI/Ul87kQMcUCUhpRSlGgVS55oFkdAoRAPtMPBi3V9lChoBmgJaA9DCOs56X1j63JAlIaUUpRoFUu6aBZHQKEQRQBxPwd1fZQoaAZoCWgPQwj2fM1y2XxxQJSGlFKUaBVLy2gWR0ChEHsbvPTodX2UKGgGaAloD0MIXHfzVAeIbkCUhpRSlGgVS6doFkdAoRE6IcinpHV9lChoBmgJaA9DCJjbvdwnzXFAlIaUUpRoFUvRaBZHQKERUJOWSlp1fZQoaAZoCWgPQwgHmzqPSj9wQJSGlFKUaBVLzGgWR0ChEaXjuKGddX2UKGgGaAloD0MI4bIKm0HMcUCUhpRSlGgVS8poFkdAoRI3K8tf5XV9lChoBmgJaA9DCEZ8J2Y9im5AlIaUUpRoFUu9aBZHQKES6zLwF1V1fZQoaAZoCWgPQwioHmlwG8VxQJSGlFKUaBVLsmgWR0ChE6PBzmwJdX2UKGgGaAloD0MIzqeOVUozckCUhpRSlGgVTR0BaBZHQKET4xUvPC51fZQoaAZoCWgPQwjysFBr2tZwQJSGlFKUaBVLtmgWR0ChFCmjsUqQdX2UKGgGaAloD0MI+l+uRUsfcUCUhpRSlGgVS8ZoFkdAoRQolF+d9XV9lChoBmgJaA9DCL68APuobHFAlIaUUpRoFUuraBZHQKEUd1DBuXN1fZQoaAZoCWgPQwhbJy7Hq4BxQJSGlFKUaBVL32gWR0ChFM6dlNDddX2UKGgGaAloD0MIWHGqtbDncECUhpRSlGgVS71oFkdAoRTjjtG/e3V9lChoBmgJaA9DCOW0p+QccWFAlIaUUpRoFU3oA2gWR0ChFVgccU/OdX2UKGgGaAloD0MIU5W2uAb6cUCUhpRSlGgVS6VoFkdAoRVepKjBVXV9lChoBmgJaA9DCCl5dY6BvWJAlIaUUpRoFU3oA2gWR0ChFZFl05lwdX2UKGgGaAloD0MIyO4CJYWQbkCUhpRSlGgVS89oFkdAoRWUjkdWAHV9lChoBmgJaA9DCP2H9NvXdnBAlIaUUpRoFUvEaBZHQKEWhnQID5l1fZQoaAZoCWgPQwjJIeLmVHZhQJSGlFKUaBVN6ANoFkdAoRaHQnhKlHV9lChoBmgJaA9DCNyhYTGqIXBAlIaUUpRoFUvMaBZHQKEXQM1CPZJ1fZQoaAZoCWgPQwjk9PV8zTZyQJSGlFKUaBVLyGgWR0ChF2FE7W/bdX2UKGgGaAloD0MIf2399F86cUCUhpRSlGgVS8loFkdAoReXvfCQ93V9lChoBmgJaA9DCEOQgxJmLm1AlIaUUpRoFUu8aBZHQKEX/f779AJ1fZQoaAZoCWgPQwhTCOQSB2JyQJSGlFKUaBVLwGgWR0ChGHEuQIUrdX2UKGgGaAloD0MIpYXLKqyVcECUhpRSlGgVS8NoFkdAoRi1y1eBx3V9lChoBmgJaA9DCDRlpx+U/HFAlIaUUpRoFU0yAWgWR0ChGaaAWi1zdX2UKGgGaAloD0MIA7NCkW4Hc0CUhpRSlGgVTQsBaBZHQKEZymEXcg11fZQoaAZoCWgPQwhNgczOogBzQJSGlFKUaBVNDgFoFkdAoRoQ9HMEBHV9lChoBmgJaA9DCFrxDYVPyG9AlIaUUpRoFUvWaBZHQKEaGOyVv/B1fZQoaAZoCWgPQwiHNgAbEC5mQJSGlFKUaBVN6ANoFkdAoRod9Ujs2XV9lChoBmgJaA9DCBFxcypZd3JAlIaUUpRoFUvkaBZHQKEaUKohpxp1fZQoaAZoCWgPQwhAS1ewTSNwQJSGlFKUaBVLqGgWR0ChGnUmD15CdX2UKGgGaAloD0MIzR39L5focECUhpRSlGgVS8VoFkdAoRqKnJkoW3V9lChoBmgJaA9DCF+Zt+o66XBAlIaUUpRoFUvnaBZHQKEbQMNMGot1fZQoaAZoCWgPQwi4PNaMTOByQJSGlFKUaBVLxmgWR0ChG1dy1eBydX2UKGgGaAloD0MICp+tg4PQYUCUhpRSlGgVTegDaBZHQKEb+1WsA/91fZQoaAZoCWgPQwhfsvFgS7pwQJSGlFKUaBVLsWgWR0ChHKbj94u9dX2UKGgGaAloD0MIJZASuzaxcUCUhpRSlGgVS/toFkdAoRzdqSHM2XV9lChoBmgJaA9DCP1NKESAY3BAlIaUUpRoFUu7aBZHQKEdHmfXf651fZQoaAZoCWgPQwg/V1uxv9pwQJSGlFKUaBVL7WgWR0ChHfkNvwVkdX2UKGgGaAloD0MISUxQw/c/ckCUhpRSlGgVS91oFkdAoR48aOxSpHV9lChoBmgJaA9DCJepSfAGx3FAlIaUUpRoFU0UAWgWR0ChHwE4WDYidX2UKGgGaAloD0MIpRMJppp3cECUhpRSlGgVTQwBaBZHQKEfBe54GEB1fZQoaAZoCWgPQwiR8/4/TohyQJSGlFKUaBVL4WgWR0ChHzqTKT0QdX2UKGgGaAloD0MIOq+xS9TTcECUhpRSlGgVS8toFkdAoR+QzN2TxHV9lChoBmgJaA9DCOoihbLwA2NAlIaUUpRoFU3oA2gWR0ChH51FQVKxdX2UKGgGaAloD0MIEyujkc+ycECUhpRSlGgVS89oFkdAoSCbwMH8j3V9lChoBmgJaA9DCCKI83CCbHBAlIaUUpRoFUvGaBZHQKEgtsO5J9R1fZQoaAZoCWgPQwhEh8CRAHhwQJSGlFKUaBVLs2gWR0ChIUMQEpy7dX2UKGgGaAloD0MIINRFCmWWckCUhpRSlGgVS+loFkdAoSN8YAKfF3V9lChoBmgJaA9DCO2ePCwU53BAlIaUUpRoFUvMaBZHQKEjl20Re1N1fZQoaAZoCWgPQwhEozuI3aRyQJSGlFKUaBVL/2gWR0ChI/bPY4ACdX2UKGgGaAloD0MIGjbK+g2scUCUhpRSlGgVS/RoFkdAoSP+eSSvDHV9lChoBmgJaA9DCCXJc33fXXFAlIaUUpRoFUu8aBZHQKEkn/wRXfZ1fZQoaAZoCWgPQwgcCMkCpoNyQJSGlFKUaBVLz2gWR0ChJOwokRjCdX2UKGgGaAloD0MIEjElkugrckCUhpRSlGgVS91oFkdAoSX4raufVnV9lChoBmgJaA9DCCodrP9zVmJAlIaUUpRoFU3oA2gWR0ChJmLSuyNXdX2UKGgGaAloD0MI2bW93RKlb0CUhpRSlGgVTVIBaBZHQKEmgM2m52B1fZQoaAZoCWgPQwiQTfIjfqdgQJSGlFKUaBVN6ANoFkdAoScLF+/gznV9lChoBmgJaA9DCC+i7Zg6iHBAlIaUUpRoFUuqaBZHQKEnL/CqIad1fZQoaAZoCWgPQwilgoqq31hwQJSGlFKUaBVLp2gWR0ChJ4SU9pyqdX2UKGgGaAloD0MIRQ98DFaQcECUhpRSlGgVS8hoFkdAoSjCMglniHV9lChoBmgJaA9DCDI4Sl4dRnFAlIaUUpRoFUvxaBZHQKEpBio86mx1fZQoaAZoCWgPQwitpYC0PypxQJSGlFKUaBVL12gWR0ChKVv99+gEdX2UKGgGaAloD0MI9l/npk36cECUhpRSlGgVS9xoFkdAoSqIFqzqr3V9lChoBmgJaA9DCPJAZJEmN29AlIaUUpRoFUuwaBZHQKEqrOnEVFh1fZQoaAZoCWgPQwiwq8lTFtBwQJSGlFKUaBVLwGgWR0ChK48h1TzedX2UKGgGaAloD0MIOXzSiQS8ZECUhpRSlGgVTegDaBZHQKEroU0vXbx1fZQoaAZoCWgPQwjcoPZbu1BxQJSGlFKUaBVL82gWR0ChLEGRvFWGdX2UKGgGaAloD0MIkSdJ10y3ZUCUhpRSlGgVTegDaBZHQKEtFT5wfhd1fZQoaAZoCWgPQwje40wTtsduQJSGlFKUaBVLuWgWR0ChLU4HHFP0dX2UKGgGaAloD0MIHqZ9c/8iYUCUhpRSlGgVTegDaBZHQKEtg9LYf4h1fZQoaAZoCWgPQwg7qMR1DG9xQJSGlFKUaBVL5GgWR0ChLZntOVPfdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
model_2e5/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e2f7f851e9644f1d58f772b6fca8888338e08e573604b31242600e15f6a3326
3
+ size 87929
model_2e5/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f755c92df8a80ec91ae85635340a92bb8d785215dde35fc60afee2bfa278f83f
3
+ size 43201
model_2e5/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
model_2e5/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (241 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.0519197080554, "std_reward": 17.09432314592217, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-09T03:18:31.732433"}