rmayormartins commited on
Commit
356473a
1 Parent(s): fbf3e43

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -3
README.md CHANGED
@@ -1,3 +1,98 @@
1
- ---
2
- license: ecl-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: ecl-2.0
3
+ ---
4
+
5
+ # YOLOv5 Cattle Counter
6
+
7
+ This repository contains a YOLOv5 model trained to detect and count cattle in images. The model is designed to facilitate the monitoring and management of cattle in agricultural settings.
8
+
9
+ ## Model Information
10
+
11
+ - **Model:** YOLOv5
12
+ - **Task:** Object Detection
13
+ - **Classes:** Cattle
14
+ - **File:** `bestyolo5.pt`
15
+
16
+ ## How to Use
17
+
18
+ To use the YOLOv5 Cattle Counter model, follow these steps:
19
+
20
+ ### 1. Loading the Model
21
+
22
+ You can load the model using the `torch` library and the `ultralytics/yolov5` repository. Here's an example in Python:
23
+
24
+ ```python
25
+ import torch
26
+
27
+ # Load the model
28
+ model = torch.hub.load('ultralytics/yolov5', 'custom', path='bestyolo5.pt')
29
+
30
+ # Load an image
31
+ img = 'path/to/your/image.jpg'
32
+
33
+ # Perform inference
34
+ results = model(img)
35
+
36
+ # Display results
37
+ results.show()
38
+ ```
39
+
40
+ ### 2. Running Inference
41
+
42
+ After loading the model, you can perform inference on your images to detect and count cattle. The model will output the image with bounding boxes around detected cattle and the total count of detected cattle.
43
+
44
+ ### 3. Example Usage
45
+
46
+ Here's an example of how to use the model to detect cattle in an image:
47
+
48
+ ```python
49
+ import torch
50
+ from PIL import Image
51
+
52
+ # Load the model
53
+ model = torch.hub.load('ultralytics/yolov5', 'custom', path='bestyolo5.pt')
54
+
55
+ # Load an image
56
+ img = Image.open('path/to/your/cattle_image.jpg')
57
+
58
+ # Perform inference
59
+ results = model(img)
60
+
61
+ # Print results
62
+ results.print() # Print results to console
63
+ results.show() # Display results
64
+
65
+ # Save results
66
+ results.save('path/to/save/results/') # Save results to a directory
67
+ ```
68
+
69
+ ## Model Training
70
+
71
+ The model was trained using a custom dataset of cattle images. The dataset was annotated with bounding boxes around cattle using MakeSense, and the YOLOv5 model was trained using these annotations. The training process involved:
72
+
73
+ 1. Collecting and annotating the data.
74
+ 2. Training the YOLOv5 model with the annotated data.
75
+ 3. Fine-tuning the model to improve accuracy.
76
+
77
+ ### Training Configuration
78
+
79
+ Soon
80
+
81
+ ## Acknowledgements
82
+
83
+ Special thanks to the contributors and the open-source community for providing resources and support.
84
+
85
+ ## License
86
+
87
+ This project is licensed under the Eclipse Public License 2.0.
88
+
89
+ ## Contact
90
+
91
+ For more information or questions about the model, please contact Ramon Mayor Martins:
92
+
93
+ - Email: [rmayormartins@gmail.com](mailto:rmayormartins@gmail.com)
94
+ - Homepage: [https://rmayormartins.github.io/](https://rmayormartins.github.io/)
95
+ - Twitter: [@rmayormartins](https://twitter.com/rmayormartins)
96
+ - GitHub: [https://github.com/rmayormartins](https://github.com/rmayormartins)
97
+ - My Radio Callsign (PU4MAY) Brazil
98
+