rkreddyp commited on
Commit
1994f6a
1 Parent(s): e262bb8

End of training

Browse files
Files changed (2) hide show
  1. README.md +204 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ base_model: mistralai/Mistral-7B-v0.1
8
+ model-index:
9
+ - name: NistCodeLlama-7b
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.0`
20
+ ```yaml
21
+ base_model: mistralai/Mistral-7B-v0.1
22
+ model_type: MistralForCausalLM
23
+ tokenizer_type: LlamaTokenizer
24
+ is_llama_derived_model: true
25
+ hub_model_id: NistCodeLlama-7b
26
+ sample_packing: false
27
+ eval_sample_packing: false
28
+ load_in_8bit: false
29
+ load_in_4bit: true
30
+ strict: false
31
+
32
+ datasets:
33
+ - path: rkreddyp/nist_800_53
34
+ ds_type: json
35
+ type:
36
+ field_instruction: question
37
+ field_input: context
38
+ field_output: answer
39
+ format: |-
40
+ [INST] Using the schema context below, generate a SQL query that answers the question.
41
+ {input}
42
+ {instruction} [/INST]
43
+
44
+
45
+ dataset_prepared_path:
46
+ val_set_size: 0.02
47
+ output_dir: ./qlora-out
48
+
49
+ adapter: qlora
50
+ lora_model_dir:
51
+
52
+ sequence_len: 2048
53
+ sample_packing: true
54
+
55
+ lora_r: 32
56
+ lora_alpha: 16
57
+ lora_dropout: 0.05
58
+ lora_target_modules:
59
+ lora_target_linear: true
60
+ lora_fan_in_fan_out:
61
+
62
+ wandb_project: axolotl-nist
63
+ wandb_entity:
64
+ wandb_watch:
65
+ wandb_run_id:
66
+ wandb_log_model:
67
+
68
+ gradient_accumulation_steps: 4
69
+ micro_batch_size: 2
70
+ num_epochs: 3
71
+ optimizer: paged_adamw_32bit
72
+ lr_scheduler: cosine
73
+ learning_rate: 0.0002
74
+
75
+ train_on_inputs: false
76
+ group_by_length: false
77
+ bf16: true
78
+ fp16: false
79
+ tf32: false
80
+
81
+ gradient_checkpointing: true
82
+ early_stopping_patience:
83
+ resume_from_checkpoint:
84
+ local_rank:
85
+ logging_steps: 1
86
+ xformers_attention:
87
+ flash_attention: true
88
+
89
+ warmup_steps: 100
90
+ eval_steps: 0.01
91
+ save_strategy: epoch
92
+ save_steps:
93
+ debug:
94
+ deepspeed:
95
+ weight_decay: 0.0
96
+ fsdp:
97
+ fsdp_config:
98
+ special_tokens:
99
+ bos_token: "<s>"
100
+ eos_token: "</s>"
101
+ unk_token: "<unk>"
102
+
103
+ ```
104
+
105
+ </details><br>
106
+
107
+ # NistCodeLlama-7b
108
+
109
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
110
+ It achieves the following results on the evaluation set:
111
+ - Loss: 0.3414
112
+
113
+ ## Model description
114
+
115
+ More information needed
116
+
117
+ ## Intended uses & limitations
118
+
119
+ More information needed
120
+
121
+ ## Training and evaluation data
122
+
123
+ More information needed
124
+
125
+ ## Training procedure
126
+
127
+ ### Training hyperparameters
128
+
129
+ The following hyperparameters were used during training:
130
+ - learning_rate: 0.0002
131
+ - train_batch_size: 2
132
+ - eval_batch_size: 2
133
+ - seed: 42
134
+ - gradient_accumulation_steps: 4
135
+ - total_train_batch_size: 8
136
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
137
+ - lr_scheduler_type: cosine
138
+ - lr_scheduler_warmup_steps: 100
139
+ - num_epochs: 3
140
+
141
+ ### Training results
142
+
143
+ | Training Loss | Epoch | Step | Validation Loss |
144
+ |:-------------:|:-----:|:----:|:---------------:|
145
+ | 1.4855 | 0.06 | 1 | 1.4808 |
146
+ | 1.4522 | 0.11 | 2 | 1.4811 |
147
+ | 1.4616 | 0.17 | 3 | 1.4788 |
148
+ | 1.5276 | 0.23 | 4 | 1.4746 |
149
+ | 1.4564 | 0.29 | 5 | 1.4662 |
150
+ | 1.4837 | 0.34 | 6 | 1.4515 |
151
+ | 1.4709 | 0.4 | 7 | 1.4280 |
152
+ | 1.3571 | 0.46 | 8 | 1.3903 |
153
+ | 1.4164 | 0.51 | 9 | 1.3363 |
154
+ | 1.3257 | 0.57 | 10 | 1.2692 |
155
+ | 1.2858 | 0.63 | 11 | 1.2027 |
156
+ | 1.2318 | 0.69 | 12 | 1.1364 |
157
+ | 1.1164 | 0.74 | 13 | 1.0595 |
158
+ | 1.0984 | 0.8 | 14 | 0.9748 |
159
+ | 0.9593 | 0.86 | 15 | 0.8923 |
160
+ | 0.8325 | 0.91 | 16 | 0.8137 |
161
+ | 0.8357 | 0.97 | 17 | 0.7426 |
162
+ | 0.6483 | 1.03 | 18 | 0.6868 |
163
+ | 0.7138 | 1.06 | 19 | 0.6400 |
164
+ | 0.6105 | 1.11 | 20 | 0.6027 |
165
+ | 0.6409 | 1.17 | 21 | 0.5686 |
166
+ | 0.5206 | 1.23 | 22 | 0.5317 |
167
+ | 0.521 | 1.29 | 23 | 0.4962 |
168
+ | 0.4409 | 1.34 | 24 | 0.4697 |
169
+ | 0.4678 | 1.4 | 25 | 0.4481 |
170
+ | 0.3731 | 1.46 | 26 | 0.4303 |
171
+ | 0.388 | 1.51 | 27 | 0.4161 |
172
+ | 0.3463 | 1.57 | 28 | 0.4085 |
173
+ | 0.3699 | 1.63 | 29 | 0.4035 |
174
+ | 0.3673 | 1.69 | 30 | 0.3992 |
175
+ | 0.4485 | 1.74 | 31 | 0.3962 |
176
+ | 0.3855 | 1.8 | 32 | 0.3929 |
177
+ | 0.3249 | 1.86 | 33 | 0.3887 |
178
+ | 0.3528 | 1.91 | 34 | 0.3839 |
179
+ | 0.372 | 1.97 | 35 | 0.3801 |
180
+ | 0.3922 | 2.03 | 36 | 0.3768 |
181
+ | 0.3783 | 2.06 | 37 | 0.3739 |
182
+ | 0.31 | 2.11 | 38 | 0.3721 |
183
+ | 0.275 | 2.17 | 39 | 0.3699 |
184
+ | 0.338 | 2.23 | 40 | 0.3665 |
185
+ | 0.3238 | 2.29 | 41 | 0.3633 |
186
+ | 0.3382 | 2.34 | 42 | 0.3597 |
187
+ | 0.3467 | 2.4 | 43 | 0.3567 |
188
+ | 0.3494 | 2.46 | 44 | 0.3541 |
189
+ | 0.3431 | 2.51 | 45 | 0.3533 |
190
+ | 0.3433 | 2.57 | 46 | 0.3522 |
191
+ | 0.304 | 2.63 | 47 | 0.3491 |
192
+ | 0.3098 | 2.69 | 48 | 0.3464 |
193
+ | 0.279 | 2.74 | 49 | 0.3443 |
194
+ | 0.3105 | 2.8 | 50 | 0.3425 |
195
+ | 0.2305 | 2.86 | 51 | 0.3414 |
196
+
197
+
198
+ ### Framework versions
199
+
200
+ - PEFT 0.8.2
201
+ - Transformers 4.38.0.dev0
202
+ - Pytorch 2.0.1+cu118
203
+ - Datasets 2.17.0
204
+ - Tokenizers 0.15.0
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49687d5a0e6879ae986896dc1c8e8c73001633d1738b070b17905df73228741c
3
+ size 335705741