risqaliyevds commited on
Commit
1c0bf05
1 Parent(s): 5706d8e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -43
README.md CHANGED
@@ -10,41 +10,45 @@ tags:
10
  - uzbek_ner
11
  - ner_for_uzbek_language
12
  ---
13
- ## O'zbek tili uchun Named Entity Recognition (NER) modeli
14
-
15
- ### Model haqida
16
- Ushbu model O'zbek tilidagi matnlarda Named Entity Recognition (NER) ni aniqlash uchun yaratilgan. Model turli xil kategoriyalardagi nomlangan entitetlarni aniqlashga qodir, jumladan shaxslar, joylar, tashkilotlar, sanalar va boshqalar. Ushbu model XLM-RoBERTa large arxitekturasiga asoslangan.
17
-
18
- ### Diqqat!!!
19
- Model NEWS datasetda train qilingan va asosan NEWS textlardagi NER ni aniqlay olish aniqligi baland.
20
-
21
- ### Kategoriyalar
22
- Model quyidagi NER kategoriyalarini aniqlashga qodir:
23
- - **LOC (Joy nomlari)**
24
- - **ORG (Tashkilot nomlari)**
25
- - **PERSON (Shaxs nomlari)**
26
- - **DATE (Sana ifodalari)**
27
- - **MONEY (Pul miqdorlari)**
28
- - **PERCENT (Foiz qiymatlari)**
29
- - **QUANTITY (Miqdorlar)**
30
- - **TIME (Vaqt ifodalari)**
31
- - **PRODUCT (Mahsulot nomlari)**
32
- - **EVENT (Voqea nomlari)**
33
- - **WORK_OF_ART (San'at asarlari nomlari)**
34
- - **LANGUAGE (Til nomlari)**
35
- - **CARDINAL (Kardinal raqamlar)**
36
- - **ORDINAL (Ordinall raqamlar)**
37
- - **NORP (Millatlar yoki diniy/siyosiy guruhlar)**
38
- - **FACILITY (Inshoot nomlari)**
39
- - **LAW (Qonunlar yoki me'yorlar)**
40
- - **GPE (Davlatlar, shaharlar, shtatlar)**
41
-
42
- ### Misollar
43
- Model qanday ishlashini ko'rsatish uchun bir necha misollar:
 
 
 
 
44
  ```python
45
  from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
46
 
47
- model_name_or_path = "sizning_model_yolingiz"
48
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
49
  model = AutoModelForTokenClassification.from_pretrained(model_name_or_path).to("cuda")
50
 
@@ -56,21 +60,21 @@ ner = nlp(text)
56
  for entity in ner:
57
  print(entity)
58
  ```
59
- Misol matni: "Shavkat Mirziyoyev Rossiyada rasmiy safarda bo'ldi."
60
 
61
- Natijalar:
62
  ```python
63
  [{'entity': 'B-PERSON', 'score': 0.88995147, 'index': 1, 'word': '▁Shavkat', 'start': 0, 'end': 7},
64
  {'entity': 'I-PERSON', 'score': 0.980681, 'index': 2, 'word': '▁Mirziyoyev', 'start': 8, 'end': 18},
65
  {'entity': 'B-GPE', 'score': 0.8208886, 'index': 3, 'word': '▁Rossiya', 'start': 19, 'end': 26}]
66
  ```
67
 
68
- ### Modelni yuklash va ishlatish
69
- Modelni Hugging Face platformasidan yuklab olish va ishlatish uchun quyidagi koddan foydalanishingiz mumkin:
70
  ```python
71
  from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
72
 
73
- model_name_or_path = "sizning_model_yolingiz"
74
 
75
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
76
  model = AutoModelForTokenClassification.from_pretrained(model_name_or_path).to("cuda")
@@ -78,13 +82,13 @@ model = AutoModelForTokenClassification.from_pretrained(model_name_or_path).to("
78
  nlp = pipeline("ner", model=model, tokenizer=tokenizer)
79
  ```
80
 
81
- ## Bog'lanish
82
 
83
- Agar savollaringiz bo'lsa yoki qo'shimcha ma'lumot kerak bo'lsa, iltimos biz bilan bog'laning.
84
  LinkedIn: [Riskaliev Murad](https://www.linkedin.com/in/risqaliyevds/)
85
 
86
- ### Litsenziya
87
- Ushbu model ochiq manba sifatida taqdim etiladi va barcha foydalanuvchilar uchun bepul foydalanish imkoniyatiga ega.
88
 
89
- ### Xulosa
90
- O'zbek tili uchun NER modeli matnlarda turli xil nomlangan entitetlarni aniqlashda samarali yordam beradi. Modelning yuqori aniqligi va keng qamrovli kategoriyalari uni ilmiy tadqiqotlar, hujjatlarni tahlil qilish va boshqa ko'plab sohalarda qo'llash imkonini beradi.
 
10
  - uzbek_ner
11
  - ner_for_uzbek_language
12
  ---
13
+ Sure! Here is the Hugging Face model card translated into English:
14
+
15
+ ---
16
+
17
+ ## Named Entity Recognition (NER) Model for Uzbek Language
18
+
19
+ ### About the Model
20
+ This model is designed for Named Entity Recognition (NER) in Uzbek text. The model can identify various categories of named entities, including persons, places, organizations, dates, and more. This model is based on the XLM-RoBERTa large architecture.
21
+
22
+ ### Note!!!
23
+ The model is trained on the NEWS dataset and primarily has high accuracy for identifying NER in NEWS texts.
24
+
25
+ ### Categories
26
+ The model can identify the following NER categories:
27
+ - **LOC (Location names)**
28
+ - **ORG (Organization names)**
29
+ - **PERSON (Person names)**
30
+ - **DATE (Date expressions)**
31
+ - **MONEY (Monetary amounts)**
32
+ - **PERCENT (Percentage values)**
33
+ - **QUANTITY (Quantities)**
34
+ - **TIME (Time expressions)**
35
+ - **PRODUCT (Product names)**
36
+ - **EVENT (Event names)**
37
+ - **WORK_OF_ART (Work of art titles)**
38
+ - **LANGUAGE (Language names)**
39
+ - **CARDINAL (Cardinal numbers)**
40
+ - **ORDINAL (Ordinal numbers)**
41
+ - **NORP (Nationalities or religious/political groups)**
42
+ - **FACILITY (Facility names)**
43
+ - **LAW (Laws or regulations)**
44
+ - **GPE (Countries, cities, states)**
45
+
46
+ ### Examples
47
+ To demonstrate how the model works, here are a few examples:
48
  ```python
49
  from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
50
 
51
+ model_name_or_path = "risqaliyevds/xlm-roberta-large-ner"
52
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
53
  model = AutoModelForTokenClassification.from_pretrained(model_name_or_path).to("cuda")
54
 
 
60
  for entity in ner:
61
  print(entity)
62
  ```
63
+ Example text: "Shavkat Mirziyoyev Rossiyada rasmiy safarda bo'ldi."
64
 
65
+ Results:
66
  ```python
67
  [{'entity': 'B-PERSON', 'score': 0.88995147, 'index': 1, 'word': '▁Shavkat', 'start': 0, 'end': 7},
68
  {'entity': 'I-PERSON', 'score': 0.980681, 'index': 2, 'word': '▁Mirziyoyev', 'start': 8, 'end': 18},
69
  {'entity': 'B-GPE', 'score': 0.8208886, 'index': 3, 'word': '▁Rossiya', 'start': 19, 'end': 26}]
70
  ```
71
 
72
+ ### Loading and Using the Model
73
+ To download and use the model from the Hugging Face platform, you can use the following code:
74
  ```python
75
  from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
76
 
77
+ model_name_or_path = "risqaliyevds/xlm-roberta-large-ner"
78
 
79
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
80
  model = AutoModelForTokenClassification.from_pretrained(model_name_or_path).to("cuda")
 
82
  nlp = pipeline("ner", model=model, tokenizer=tokenizer)
83
  ```
84
 
85
+ ## Contact
86
 
87
+ If you have any questions or need more information, please contact us.
88
  LinkedIn: [Riskaliev Murad](https://www.linkedin.com/in/risqaliyevds/)
89
 
90
+ ### License
91
+ This model is provided as open source and is available for free use by all users.
92
 
93
+ ### Conclusion
94
+ The NER model for the Uzbek language is effective in identifying various named entities in texts. The high accuracy and wide range of categories make it useful for academic research, document analysis, and many other fields.