Commit
·
424a341
1
Parent(s):
55b3883
Upload PPO Lunar Lander V2
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +12 -12
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 261.05 +/- 21.86
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff070a409d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff070a40a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff070a40af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff070a40b80>", "_build": "<function ActorCriticPolicy._build at 0x7ff070a40c10>", "forward": "<function ActorCriticPolicy.forward at 0x7ff070a40ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff070a40d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff070a40dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff070a40e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff070a40ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff070a40f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff070a36fc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671970652985035022, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2cfT17LUo/Et08PsviJ7+YwV6+GkG/vQAAAAAAAAAAs3DivZIBpz8mP8m+RlaavnSYqjw+d4y9AAAAAAAAAAAaQKU+LMAcPuZcn77fF5e/2QKWPfe1Q74AAAAAAAAAAJ1r0z5qx3I+AjkSPSWTjb+BT4k+XTmHvAAAAAAAAAAAbQSWvk9CeD7LfGi+ZM93v8Nb1b5K0JO+AAAAAAAAAACNA7S9PHuSP4XFsr6BwuS+gq6TPvMUe70AAAAAAAAAAM04EL1irsE/iNjwvUL4qr4W+qA+ejWAPgAAAAAAAAAAM+PJukQsnj/jDGc8miIRv43gib1lQWS+AAAAAAAAAABmVHu8Z1sMvf3RHr6CQpG/xS9WvSi8oL4AAIA/AACAP82Oyryw1LI/+NR+vvPjv70UOh07Hzi5vAAAAAAAAAAAGkpbPewhnz9DQ6Y+OVYSv0qdaD0qghQ+AAAAAAAAAACa1My8NlJzP/ixLb7U3B+/uT2kPjh4Wz4AAAAAAAAAALNs2j1Dub4/mXa7PozyX72sz2c+8uZ2PgAAAAAAAAAAmrExPRVWoT/1554+ZGUjvxIitTliIF48AAAAAAAAAABwPM8+LCNCP2alvT4E+3G/sonIPj0Qhj4AAAAAAAAAAGZpED4yVpg/wuLIPrK1Ar8UcI+9n0wbPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeqhtwyjIUMCUhpRSlIwBbJRLXIwBdJRHQF+yrS3LFGZ1fZQoaAZoCWgPQwgYmBWKdHxswJSGlFKUaBVLd2gWR0BfshZEDyOJdX2UKGgGaAloD0MIJEIj2DhvZMCUhpRSlGgVS1xoFkdAX7ZqfvnbI3V9lChoBmgJaA9DCL7bvHFS4lbAlIaUUpRoFUt0aBZHQF+458jRlYl1fZQoaAZoCWgPQwjyQc9m1YhYwJSGlFKUaBVLSmgWR0BfuptrKvFFdX2UKGgGaAloD0MIbLJGPUTkWsCUhpRSlGgVS1toFkdAX7wnc+JP7HV9lChoBmgJaA9DCIs08Q7wrETAlIaUUpRoFUtSaBZHQF/BkD6nBLx1fZQoaAZoCWgPQwgHCryTz1piwJSGlFKUaBVLf2gWR0BfxefukUKzdX2UKGgGaAloD0MIw9hCkIMZW8CUhpRSlGgVS4loFkdAX8Yj/uLJjnV9lChoBmgJaA9DCIlBYOXQTFnAlIaUUpRoFUt5aBZHQF/HFWGRFJB1fZQoaAZoCWgPQwi/9Pbnot5dwJSGlFKUaBVLW2gWR0BfxwJb+tKadX2UKGgGaAloD0MIBkg0gSInUECUhpRSlGgVS05oFkdAX8nHuJDVpnV9lChoBmgJaA9DCCnN5nEYRlbAlIaUUpRoFUtfaBZHQF/JbAUL2Ht1fZQoaAZoCWgPQwhBu0OKAW5YwJSGlFKUaBVLZWgWR0BfyrW3BpHqdX2UKGgGaAloD0MIRyHJrN5ZQcCUhpRSlGgVS3VoFkdAX8rPqs2ehHV9lChoBmgJaA9DCCHOwwnM62nAlIaUUpRoFUt9aBZHQF/Lebd8ArB1fZQoaAZoCWgPQwjf4XZoWOlXwJSGlFKUaBVLe2gWR0Bfzmxt52QodX2UKGgGaAloD0MIkgThCiicTcCUhpRSlGgVS3poFkdAX9BBIFvAGnV9lChoBmgJaA9DCAGFevoI2F3AlIaUUpRoFUtnaBZHQF/SHPeHi3p1fZQoaAZoCWgPQwg1m8dhMLpYwJSGlFKUaBVLZGgWR0Bf0xigCfYjdX2UKGgGaAloD0MIduEH59PbYsCUhpRSlGgVS2xoFkdAX9aPQv6CUXV9lChoBmgJaA9DCPWDukih3k/AlIaUUpRoFUtWaBZHQF/asRxtHhF1fZQoaAZoCWgPQwiVgJiECzJpwJSGlFKUaBVLs2gWR0Bf2i0WuX/pdX2UKGgGaAloD0MICvZf56ZhSMCUhpRSlGgVS1RoFkdAX92bKA8SwnV9lChoBmgJaA9DCNBefTz0Q1nAlIaUUpRoFUtTaBZHQF/eUzbeuV51fZQoaAZoCWgPQwipaRfTTDNSwJSGlFKUaBVLPWgWR0Bf3sejmCAddX2UKGgGaAloD0MIecvVj81jacCUhpRSlGgVS15oFkdAX+DSncclxHV9lChoBmgJaA9DCCfeAZ60Y2XAlIaUUpRoFUuFaBZHQF/hjBl+Vkd1fZQoaAZoCWgPQwhbQdMSq69kwJSGlFKUaBVLeWgWR0Bf5BgRbr1NdX2UKGgGaAloD0MI9DY2O1LDRcCUhpRSlGgVS3xoFkdAX+Tub7TDwnV9lChoBmgJaA9DCPYpx2RxfFvAlIaUUpRoFUtPaBZHQF/mmF8G9pR1fZQoaAZoCWgPQwg4+S06WS9TwJSGlFKUaBVLZ2gWR0Bf6+tnwob5dX2UKGgGaAloD0MIRKhSs8f5csCUhpRSlGgVS5xoFkdAX+yepXIU8HV9lChoBmgJaA9DCEJAvoQKUlrAlIaUUpRoFUtXaBZHQF/tCeVcD8t1fZQoaAZoCWgPQwiTVnxD4d1WwJSGlFKUaBVLhWgWR0Bf7LGNrCWNdX2UKGgGaAloD0MI3gTfNP1TZcCUhpRSlGgVS5JoFkdAX+3S6UaAF3V9lChoBmgJaA9DCMzPDU3ZUmfAlIaUUpRoFUt/aBZHQF/uhwl0HQh1fZQoaAZoCWgPQwhk5gKXxyxTwJSGlFKUaBVLWWgWR0Bf9MX3xnWbdX2UKGgGaAloD0MI/b/qyJF/VcCUhpRSlGgVS2ZoFkdAX/UDxLCemXV9lChoBmgJaA9DCOfG9IQl2FrAlIaUUpRoFUtNaBZHQF/1QgcLjPx1fZQoaAZoCWgPQwif46PFGXdFwJSGlFKUaBVLbmgWR0Bf+mkvboKVdX2UKGgGaAloD0MI9tTqq6vNVMCUhpRSlGgVS0NoFkdAX/1NbkfcOHV9lChoBmgJaA9DCCl64GOw/lPAlIaUUpRoFUtlaBZHQF/9/Vy3kPt1fZQoaAZoCWgPQwi++KI9Xn5GwJSGlFKUaBVLkGgWR0Bf/pc9nscAdX2UKGgGaAloD0MIUtMuphl0aMCUhpRSlGgVS4ZoFkdAYABtRekYXXV9lChoBmgJaA9DCFa45SMpGHbAlIaUUpRoFUtoaBZHQGAAekgwGnp1fZQoaAZoCWgPQwj2lQfpKZZQwJSGlFKUaBVLVmgWR0BgAMCvHLiddX2UKGgGaAloD0MI9aJ2vwrMWcCUhpRSlGgVS1toFkdAYAGc+aBqbnV9lChoBmgJaA9DCIjyBS0kMlXAlIaUUpRoFUtCaBZHQGACjPnjhk11fZQoaAZoCWgPQwi5jQbwlnFgwJSGlFKUaBVLnGgWR0BgBLutwJgLdX2UKGgGaAloD0MIF9aNd8c5YcCUhpRSlGgVS5RoFkdAYAViuMdcS3V9lChoBmgJaA9DCGvxKQBGum3AlIaUUpRoFUtgaBZHQGAGZbQkX1t1fZQoaAZoCWgPQwjnU8cqpcFcwJSGlFKUaBVLemgWR0BgBmqtHQQddX2UKGgGaAloD0MIdvwXCII+YMCUhpRSlGgVS4xoFkdAYAgsoUi6hHV9lChoBmgJaA9DCN9qnbgciV7AlIaUUpRoFUteaBZHQGAI/ub7TDx1fZQoaAZoCWgPQwhXz0nvG0VTwJSGlFKUaBVLlmgWR0BgCOQ0XP7fdX2UKGgGaAloD0MInpYfuEoEYMCUhpRSlGgVS3ZoFkdAYAk8h9srNHV9lChoBmgJaA9DCJ5cUyCz0UTAlIaUUpRoFUtJaBZHQGAKvu5SWJJ1fZQoaAZoCWgPQwgjopi8ATVhwJSGlFKUaBVLVmgWR0BgCzNnoPkJdX2UKGgGaAloD0MI443MI39oWsCUhpRSlGgVS2toFkdAYAwC0WuX/3V9lChoBmgJaA9DCHxinSrfxVbAlIaUUpRoFUtvaBZHQGAMvzvqkdp1fZQoaAZoCWgPQwhVa2EW2lRUwJSGlFKUaBVLWGgWR0BgDWzjWCmNdX2UKGgGaAloD0MIeLZHb7gwVsCUhpRSlGgVS3RoFkdAYA8ELYwqRXV9lChoBmgJaA9DCF5Ih4cwnlbAlIaUUpRoFUtOaBZHQGAPAjyFwkx1fZQoaAZoCWgPQwi0ImqiT1pkwJSGlFKUaBVLeGgWR0BgD+3rleWwdX2UKGgGaAloD0MIkdRCyeScPMCUhpRSlGgVS1RoFkdAYBDhKlHjInV9lChoBmgJaA9DCHV4COOnOTnAlIaUUpRoFUtTaBZHQGAQw04zabp1fZQoaAZoCWgPQwjeHK7VHidXwJSGlFKUaBVLimgWR0BgELronrprdX2UKGgGaAloD0MIRx6ILNLQV8CUhpRSlGgVS1FoFkdAYBI5sj3VTnV9lChoBmgJaA9DCKTH7236WlDAlIaUUpRoFUt2aBZHQGATR2KVII51fZQoaAZoCWgPQwjCbW3heTZawJSGlFKUaBVLT2gWR0BgFGFYdQwcdX2UKGgGaAloD0MIOgfPhCalVcCUhpRSlGgVS1BoFkdAYBTtXPqs2nV9lChoBmgJaA9DCNxGA3gLTWTAlIaUUpRoFUtMaBZHQGAWIF3Y+St1fZQoaAZoCWgPQwgwgzEiUfFhwJSGlFKUaBVLbWgWR0BgFlaY/mkndX2UKGgGaAloD0MI+WpHcY5XUcCUhpRSlGgVS25oFkdAYBZhvze41HV9lChoBmgJaA9DCGkewCK/NmbAlIaUUpRoFUtdaBZHQGAXkeZG8VZ1fZQoaAZoCWgPQwgHsTOFznlIwJSGlFKUaBVLiWgWR0BgGe5+YtxudX2UKGgGaAloD0MIsMqFyr9eR8CUhpRSlGgVS1RoFkdAYBnb/Ot4iXV9lChoBmgJaA9DCKXAApiyMmDAlIaUUpRoFUtjaBZHQGAa8SoOx0N1fZQoaAZoCWgPQwgBp3fxfglhwJSGlFKUaBVLdGgWR0BgG7KJVKf4dX2UKGgGaAloD0MI5L9AECAPUsCUhpRSlGgVS2doFkdAYB0kka/ATXV9lChoBmgJaA9DCHnnUIaqJk3AlIaUUpRoFUtGaBZHQGAep3os7Mh1fZQoaAZoCWgPQwiJJlDEIkRjwJSGlFKUaBVLdGgWR0BgHqX4TK1YdX2UKGgGaAloD0MICwvuBzxNW8CUhpRSlGgVS3hoFkdAYB8WRA8jiXV9lChoBmgJaA9DCHNoke38UGTAlIaUUpRoFUtxaBZHQGAf42sJY1Z1fZQoaAZoCWgPQwiQatjviStIwJSGlFKUaBVLYGgWR0BgIK6reZXudX2UKGgGaAloD0MI3KFhMeoIWcCUhpRSlGgVS5VoFkdAYCElyimEXnV9lChoBmgJaA9DCGqIKvwZNFnAlIaUUpRoFUtjaBZHQGAjcQiA2AJ1fZQoaAZoCWgPQwgfSN45FJ1wwJSGlFKUaBVLimgWR0BgJA7o0Q9SdX2UKGgGaAloD0MIX3tmSYDjXMCUhpRSlGgVS4RoFkdAYCSE6DGtIXV9lChoBmgJaA9DCNRJtroc5WDAlIaUUpRoFUt1aBZHQGAknuAqd6N1fZQoaAZoCWgPQwi71Aj9TIRgwJSGlFKUaBVLhGgWR0BgJmJ1q33IdX2UKGgGaAloD0MIMzZ0s7/HbsCUhpRSlGgVS25oFkdAYCdOSGJvYXV9lChoBmgJaA9DCDykGCDRsmHAlIaUUpRoFUtLaBZHQGApBtLteD51fZQoaAZoCWgPQwhEMXkDTOliwJSGlFKUaBVLbmgWR0BgKrqGDcubdX2UKGgGaAloD0MIm8dhMH8RWsCUhpRSlGgVS4NoFkdAYCskIomXxHV9lChoBmgJaA9DCKYNh6WBZ1PAlIaUUpRoFUtuaBZHQGAsX5WRzRx1fZQoaAZoCWgPQwhF8SprGyNnwJSGlFKUaBVLmGgWR0BgLMS/TLGJdX2UKGgGaAloD0MIXVMgs7OmU8CUhpRSlGgVS2xoFkdAYCylWOp84XV9lChoBmgJaA9DCN+pgHuedFjAlIaUUpRoFUtgaBZHQGAtQ40dilV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff070a409d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff070a40a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff070a40af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff070a40b80>", "_build": "<function ActorCriticPolicy._build at 0x7ff070a40c10>", "forward": "<function ActorCriticPolicy.forward at 0x7ff070a40ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff070a40d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff070a40dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff070a40e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff070a40ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff070a40f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff070a36fc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671971169853101680, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABYWYb4p6E4/OOBAPhb0m76EpcQ7IGWMPQAAAAAAAAAAzWM1vVw+tT85QQS/BM6DvRH+l7udaiG+AAAAAAAAAACam4k89qgzuHXvBbvGhIG2n2eku1rD8zUAAIA/AACAPyYtm73odo89ejLHvZ5xQb4+rQ29BwetPAAAAAAAAAAAzUIOPRRQqLp4AHK55mxWtPDbAroT0Yo4AACAPwAAgD8AlQc9UjiROPWutboFdis3zn4Zu62OlLYAAIA/AACAPxrTCL2up6W4Cm9eOKKbgjMJaM65O1KCtwAAgD8AAIA/DShcvhRlEj+Lmvo9VIqNvuzVQL0JsxM9AAAAAAAAAADN5Ls79uQVur7fXbmcHfK06T2hOgyBgTgAAIA/AACAP81GVLxcL2G6ZeMjO7xr5LL23yY7Dy0+ugAAgD8AAIA/TT4jvXv2i7pn6LG7y3IRNuiZQruhkYS1AACAPwAAgD8amTC9KRBeuoZdrLpi+HG1EWYDOjP+yTkAAIA/AACAPyZsEb77Ijg/4BaZPobJnr4QVQQ9BodEPQAAAAAAAAAAs74bvY/2KLoZfos57dgHNPZs07rxSaG4AACAPwAAgD9mlEM8XK8LupR1RbkJuV+02O0VO9MLZzgAAIA/AACAP+ZzXb2PfiW6zmFXOMYrSTPQxJq6VjaAtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImbuWkA8MYkCUhpRSlIwBbJRN6AOMAXSUR0CZt3FCLMs6dX2UKGgGaAloD0MIINWw35NFZ0CUhpRSlGgVTegDaBZHQJm9Xh5xBE91fZQoaAZoCWgPQwhEM0+uKS1mQJSGlFKUaBVN6ANoFkdAmb22ilBQenV9lChoBmgJaA9DCAdBR6taamdAlIaUUpRoFU3oA2gWR0CZvl3WFvhqdX2UKGgGaAloD0MIbmk1JO4qY0CUhpRSlGgVTegDaBZHQJm/lL127nR1fZQoaAZoCWgPQwgTtp+McQRhQJSGlFKUaBVN6ANoFkdAmb/SrtE5Q3V9lChoBmgJaA9DCEOM17yqW2NAlIaUUpRoFU3oA2gWR0CZwYcENe+mdX2UKGgGaAloD0MIlx+4yhMTZUCUhpRSlGgVTegDaBZHQJnD/xJ/XoV1fZQoaAZoCWgPQwhN845TdD9kQJSGlFKUaBVN6ANoFkdAmcXun62v0XV9lChoBmgJaA9DCMA8ZMoHcWZAlIaUUpRoFU3oA2gWR0CZyE0PYnOTdX2UKGgGaAloD0MIgZICC+CoZkCUhpRSlGgVTegDaBZHQJnIfp8neBR1fZQoaAZoCWgPQwgoCvSJPNldQJSGlFKUaBVN6ANoFkdAmc59e6ZpjHV9lChoBmgJaA9DCEM4ZtmT9GFAlIaUUpRoFU3oA2gWR0CZ2o72L5ymdX2UKGgGaAloD0MIhX07iYiRY0CUhpRSlGgVTegDaBZHQJneGz7di2F1fZQoaAZoCWgPQwhQHEC/bwZsQJSGlFKUaBVNUwNoFkdAmeKb876pHnV9lChoBmgJaA9DCH1dhv90B2JAlIaUUpRoFU3oA2gWR0CZ9+mpVCHAdX2UKGgGaAloD0MIlZnS+ltxY0CUhpRSlGgVTegDaBZHQJoF4PAfuCx1fZQoaAZoCWgPQwhHrptSXklkQJSGlFKUaBVN6ANoFkdAmgxX+2mYSnV9lChoBmgJaA9DCPrPmh9/hWRAlIaUUpRoFU3oA2gWR0CaDLr7O3UhdX2UKGgGaAloD0MIJa34hkLsYUCUhpRSlGgVTegDaBZHQJoNgh4dIXl1fZQoaAZoCWgPQwiLOJ1kK9xkQJSGlFKUaBVN6ANoFkdAmg76Ln9vTHV9lChoBmgJaA9DCBTsv87Nb2FAlIaUUpRoFU3oA2gWR0CaD0OHnEEUdX2UKGgGaAloD0MIJv+Tv/vAYUCUhpRSlGgVTegDaBZHQJoRTlxOtXB1fZQoaAZoCWgPQwjRdeEH53RhQJSGlFKUaBVN6ANoFkdAmhRrrkbPyHV9lChoBmgJaA9DCIffTbfsV2NAlIaUUpRoFU3oA2gWR0CaFqUtZmqYdX2UKGgGaAloD0MIE+6Veat1ZUCUhpRSlGgVTegDaBZHQJoZBF1B+nZ1fZQoaAZoCWgPQwiTNeohGulYQJSGlFKUaBVN6ANoFkdAmhk1RHf/FXV9lChoBmgJaA9DCIMWEjA6vGNAlIaUUpRoFU3oA2gWR0CaHwibDuSfdX2UKGgGaAloD0MIuAIK9fSUYkCUhpRSlGgVTegDaBZHQJorcz41xbV1fZQoaAZoCWgPQwjAXfbrzqNjQJSGlFKUaBVN6ANoFkdAmi88zuWrwXV9lChoBmgJaA9DCLPO+L44gmFAlIaUUpRoFU3oA2gWR0CaNAVymygPdX2UKGgGaAloD0MI41C/C9ubYUCUhpRSlGgVTegDaBZHQJo1AfV7QcB1fZQoaAZoCWgPQwhW9fI7TbhOQJSGlFKUaBVNCQFoFkdAmk60vGp++nV9lChoBmgJaA9DCBSwHYzYpmZAlIaUUpRoFU3oA2gWR0CaUogRbr1NdX2UKGgGaAloD0MI2e4eoHtEYECUhpRSlGgVTegDaBZHQJpYdyLhrFh1fZQoaAZoCWgPQwi8XS9NEZ1jQJSGlFKUaBVN6ANoFkdAmljXMQmNR3V9lChoBmgJaA9DCJG6nX3l2mFAlIaUUpRoFU3oA2gWR0CaWY1JlJ6IdX2UKGgGaAloD0MIPPceLrkhYkCUhpRSlGgVTegDaBZHQJpa2GGmDUV1fZQoaAZoCWgPQwgiGAeXTqlxQJSGlFKUaBVNIwNoFkdAmlr4YR/ViHV9lChoBmgJaA9DCOrr+ZrlHGRAlIaUUpRoFU3oA2gWR0CaWx5cC5mRdX2UKGgGaAloD0MI81oJ3SUpZUCUhpRSlGgVTegDaBZHQJpcvk1dgOV1fZQoaAZoCWgPQwiRtBt9zFcZQJSGlFKUaBVL12gWR0CaXcV3EAHWdX2UKGgGaAloD0MI2SH+YUuGYUCUhpRSlGgVTegDaBZHQJpfL8UEgW91fZQoaAZoCWgPQwjUuaKUEC5nQJSGlFKUaBVN6ANoFkdAmmD0bT+efHV9lChoBmgJaA9DCMQI4dHGo2RAlIaUUpRoFU3oA2gWR0CaYvmdAgPmdX2UKGgGaAloD0MIx2gdVU1oRkCUhpRSlGgVS/toFkdAmmV8aCL/CXV9lChoBmgJaA9DCFNA2v+AWGJAlIaUUpRoFU3oA2gWR0CaaITvAoG6dX2UKGgGaAloD0MIwK+RJIjkZUCUhpRSlGgVTegDaBZHQJp2usQumJp1fZQoaAZoCWgPQwgZG7rZn79jQJSGlFKUaBVN6ANoFkdAmntxq46OpHV9lChoBmgJaA9DCB5Robq57WFAlIaUUpRoFU3oA2gWR0CafGmDDjzadX2UKGgGaAloD0MI/dmPFBHEZUCUhpRSlGgVTegDaBZHQJqVT8AJb+t1fZQoaAZoCWgPQwiySBPvgGdgQJSGlFKUaBVN6ANoFkdAmp6GS+xnnXV9lChoBmgJaA9DCOHQWzy8x19AlIaUUpRoFU3oA2gWR0CanufthNM5dX2UKGgGaAloD0MIT5DY7p5hZECUhpRSlGgVTegDaBZHQJqfpyeZof11fZQoaAZoCWgPQwgU7L/OzTtmQJSGlFKUaBVN6ANoFkdAmqEWBe5WinV9lChoBmgJaA9DCNbgfVWuy2FAlIaUUpRoFU3oA2gWR0CaoVzNliBodX2UKGgGaAloD0MIu+1Ccx0ZYUCUhpRSlGgVTegDaBZHQJqjW7kGRmt1fZQoaAZoCWgPQwgDQBU37lZjQJSGlFKUaBVN6ANoFkdAmqSdvbXYlXV9lChoBmgJaA9DCHqNXaL6SWZAlIaUUpRoFU3oA2gWR0CapkPGyX2NdX2UKGgGaAloD0MIsoUgByU2Z0CUhpRSlGgVTegDaBZHQJqoSrJbMX91fZQoaAZoCWgPQwgPCkrRSvxkQJSGlFKUaBVN6ANoFkdAmqqRYmsvI3V9lChoBmgJaA9DCLyyCwZXTWZAlIaUUpRoFU3oA2gWR0CarVlAu7HydX2UKGgGaAloD0MIeEXwv5V2YUCUhpRSlGgVTegDaBZHQJqwo1vVEux1fZQoaAZoCWgPQwhdTgmIyU9iQJSGlFKUaBVN6ANoFkdAmsBcRYigTXV9lChoBmgJaA9DCPNWXYcqeHBAlIaUUpRoFU0wAmgWR0CaxPghr30xdX2UKGgGaAloD0MI4A8//72rY0CUhpRSlGgVTegDaBZHQJrE+THKfWd1fZQoaAZoCWgPQwgiwVQza+1hQJSGlFKUaBVN6ANoFkdAmsXVsDW9UXV9lChoBmgJaA9DCFX2XRF8tmVAlIaUUpRoFU3oA2gWR0Ca3lhwEQoTdX2UKGgGaAloD0MIXRd+cL5mbUCUhpRSlGgVTaECaBZHQJriOpyZKFt1fZQoaAZoCWgPQwhvSKMCJ35wQJSGlFKUaBVN3gNoFkdAmuYbJbMX8HV9lChoBmgJaA9DCHRd+MF5zGFAlIaUUpRoFU3oA2gWR0Ca5uSRbKRudX2UKGgGaAloD0MINpGZC1xgYkCUhpRSlGgVTegDaBZHQJrngaef7Jp1fZQoaAZoCWgPQwhag/dVuZJdQJSGlFKUaBVN6ANoFkdAmuijIV/MGHV9lChoBmgJaA9DCP1reeV6KWNAlIaUUpRoFU3oA2gWR0Ca6NxhUipvdX2UKGgGaAloD0MINLvurUiEZkCUhpRSlGgVTegDaBZHQJrqgJWvKU51fZQoaAZoCWgPQwinzM03IphmQJSGlFKUaBVN6ANoFkdAmuuDwDvE0nV9lChoBmgJaA9DCOzf9Zmz2FxAlIaUUpRoFU3oA2gWR0Ca7rKUFB6bdX2UKGgGaAloD0MIrKjBNIzEZkCUhpRSlGgVTegDaBZHQJrzrCdjG1h1fZQoaAZoCWgPQwhN+KV+3rNiQJSGlFKUaBVN6ANoFkdAmvcJbyH2y3V9lChoBmgJaA9DCLu04bA0s19AlIaUUpRoFU3oA2gWR0CbBldGAkLQdX2UKGgGaAloD0MIWrkXmBVJZUCUhpRSlGgVTegDaBZHQJsLRuTA31l1fZQoaAZoCWgPQwieew+XHP5lQJSGlFKUaBVN6ANoFkdAmwtHA/LTyHV9lChoBmgJaA9DCH7iAPp95WdAlIaUUpRoFU3oA2gWR0CbDC86FM7EdX2UKGgGaAloD0MIgosVNZgIZ0CUhpRSlGgVTegDaBZHQJslE2kzoEB1fZQoaAZoCWgPQwjP+SmOA3JgQJSGlFKUaBVN6ANoFkdAmylXLq2SdXV9lChoBmgJaA9DCKUSntDra19AlIaUUpRoFU3oA2gWR0CbLUhysCDFdX2UKGgGaAloD0MIN6eSAaC5ZECUhpRSlGgVTegDaBZHQJsuHocJdB11fZQoaAZoCWgPQwg/5C1XP5xiQJSGlFKUaBVN6ANoFkdAmy7Ekv9LpXV9lChoBmgJaA9DCK5+bJKfCGRAlIaUUpRoFU3oA2gWR0CbMABsANobdX2UKGgGaAloD0MIw9SWOkhEZECUhpRSlGgVTegDaBZHQJswP9ycTal1fZQoaAZoCWgPQwgwn6wYLiVnQJSGlFKUaBVN6ANoFkdAmzIIZZSvT3V9lChoBmgJaA9DCEzirIgaz2NAlIaUUpRoFU3oA2gWR0CbMzxm03OwdX2UKGgGaAloD0MI7iHhe/8hZUCUhpRSlGgVTegDaBZHQJs21mvnr6d1fZQoaAZoCWgPQwg5J/bQPnViQJSGlFKUaBVN6ANoFkdAmzy3lOoHcHV9lChoBmgJaA9DCAbWcfzQbGVAlIaUUpRoFU3oA2gWR0CbQHUHpr1vdX2UKGgGaAloD0MIsoAJ3Dq5Z0CUhpRSlGgVTegDaBZHQJtS8p+c6Nl1fZQoaAZoCWgPQwhn8WJhiPRcQJSGlFKUaBVN6ANoFkdAm1jGDg62fHV9lChoBmgJaA9DCCYeUDblX2ZAlIaUUpRoFU3oA2gWR0CbWMiRnvlVdX2UKGgGaAloD0MIILQevkw4Z0CUhpRSlGgVTegDaBZHQJtZ2eAd4ml1fZQoaAZoCWgPQwhdFajFYG5iQJSGlFKUaBVN6ANoFkdAm2B05hjOLXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dd5f131e81e72cd65191b1db6f7d24aa6c6a1539400705ef24e9964a75f4343
|
3 |
+
size 147218
|
ppo-LunarLander-v2/data
CHANGED
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,24 +66,24 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
-
"gamma": 0.
|
81 |
-
"gae_lambda": 0.
|
82 |
-
"ent_coef": 0.
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1671971169853101680,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABYWYb4p6E4/OOBAPhb0m76EpcQ7IGWMPQAAAAAAAAAAzWM1vVw+tT85QQS/BM6DvRH+l7udaiG+AAAAAAAAAACam4k89qgzuHXvBbvGhIG2n2eku1rD8zUAAIA/AACAPyYtm73odo89ejLHvZ5xQb4+rQ29BwetPAAAAAAAAAAAzUIOPRRQqLp4AHK55mxWtPDbAroT0Yo4AACAPwAAgD8AlQc9UjiROPWutboFdis3zn4Zu62OlLYAAIA/AACAPxrTCL2up6W4Cm9eOKKbgjMJaM65O1KCtwAAgD8AAIA/DShcvhRlEj+Lmvo9VIqNvuzVQL0JsxM9AAAAAAAAAADN5Ls79uQVur7fXbmcHfK06T2hOgyBgTgAAIA/AACAP81GVLxcL2G6ZeMjO7xr5LL23yY7Dy0+ugAAgD8AAIA/TT4jvXv2i7pn6LG7y3IRNuiZQruhkYS1AACAPwAAgD8amTC9KRBeuoZdrLpi+HG1EWYDOjP+yTkAAIA/AACAPyZsEb77Ijg/4BaZPobJnr4QVQQ9BodEPQAAAAAAAAAAs74bvY/2KLoZfos57dgHNPZs07rxSaG4AACAPwAAgD9mlEM8XK8LupR1RbkJuV+02O0VO9MLZzgAAIA/AACAP+ZzXb2PfiW6zmFXOMYrSTPQxJq6VjaAtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImbuWkA8MYkCUhpRSlIwBbJRN6AOMAXSUR0CZt3FCLMs6dX2UKGgGaAloD0MIINWw35NFZ0CUhpRSlGgVTegDaBZHQJm9Xh5xBE91fZQoaAZoCWgPQwhEM0+uKS1mQJSGlFKUaBVN6ANoFkdAmb22ilBQenV9lChoBmgJaA9DCAdBR6taamdAlIaUUpRoFU3oA2gWR0CZvl3WFvhqdX2UKGgGaAloD0MIbmk1JO4qY0CUhpRSlGgVTegDaBZHQJm/lL127nR1fZQoaAZoCWgPQwgTtp+McQRhQJSGlFKUaBVN6ANoFkdAmb/SrtE5Q3V9lChoBmgJaA9DCEOM17yqW2NAlIaUUpRoFU3oA2gWR0CZwYcENe+mdX2UKGgGaAloD0MIlx+4yhMTZUCUhpRSlGgVTegDaBZHQJnD/xJ/XoV1fZQoaAZoCWgPQwhN845TdD9kQJSGlFKUaBVN6ANoFkdAmcXun62v0XV9lChoBmgJaA9DCMA8ZMoHcWZAlIaUUpRoFU3oA2gWR0CZyE0PYnOTdX2UKGgGaAloD0MIgZICC+CoZkCUhpRSlGgVTegDaBZHQJnIfp8neBR1fZQoaAZoCWgPQwgoCvSJPNldQJSGlFKUaBVN6ANoFkdAmc59e6ZpjHV9lChoBmgJaA9DCEM4ZtmT9GFAlIaUUpRoFU3oA2gWR0CZ2o72L5ymdX2UKGgGaAloD0MIhX07iYiRY0CUhpRSlGgVTegDaBZHQJneGz7di2F1fZQoaAZoCWgPQwhQHEC/bwZsQJSGlFKUaBVNUwNoFkdAmeKb876pHnV9lChoBmgJaA9DCH1dhv90B2JAlIaUUpRoFU3oA2gWR0CZ9+mpVCHAdX2UKGgGaAloD0MIlZnS+ltxY0CUhpRSlGgVTegDaBZHQJoF4PAfuCx1fZQoaAZoCWgPQwhHrptSXklkQJSGlFKUaBVN6ANoFkdAmgxX+2mYSnV9lChoBmgJaA9DCPrPmh9/hWRAlIaUUpRoFU3oA2gWR0CaDLr7O3UhdX2UKGgGaAloD0MIJa34hkLsYUCUhpRSlGgVTegDaBZHQJoNgh4dIXl1fZQoaAZoCWgPQwiLOJ1kK9xkQJSGlFKUaBVN6ANoFkdAmg76Ln9vTHV9lChoBmgJaA9DCBTsv87Nb2FAlIaUUpRoFU3oA2gWR0CaD0OHnEEUdX2UKGgGaAloD0MIJv+Tv/vAYUCUhpRSlGgVTegDaBZHQJoRTlxOtXB1fZQoaAZoCWgPQwjRdeEH53RhQJSGlFKUaBVN6ANoFkdAmhRrrkbPyHV9lChoBmgJaA9DCIffTbfsV2NAlIaUUpRoFU3oA2gWR0CaFqUtZmqYdX2UKGgGaAloD0MIE+6Veat1ZUCUhpRSlGgVTegDaBZHQJoZBF1B+nZ1fZQoaAZoCWgPQwiTNeohGulYQJSGlFKUaBVN6ANoFkdAmhk1RHf/FXV9lChoBmgJaA9DCIMWEjA6vGNAlIaUUpRoFU3oA2gWR0CaHwibDuSfdX2UKGgGaAloD0MIuAIK9fSUYkCUhpRSlGgVTegDaBZHQJorcz41xbV1fZQoaAZoCWgPQwjAXfbrzqNjQJSGlFKUaBVN6ANoFkdAmi88zuWrwXV9lChoBmgJaA9DCLPO+L44gmFAlIaUUpRoFU3oA2gWR0CaNAVymygPdX2UKGgGaAloD0MI41C/C9ubYUCUhpRSlGgVTegDaBZHQJo1AfV7QcB1fZQoaAZoCWgPQwhW9fI7TbhOQJSGlFKUaBVNCQFoFkdAmk60vGp++nV9lChoBmgJaA9DCBSwHYzYpmZAlIaUUpRoFU3oA2gWR0CaUogRbr1NdX2UKGgGaAloD0MI2e4eoHtEYECUhpRSlGgVTegDaBZHQJpYdyLhrFh1fZQoaAZoCWgPQwi8XS9NEZ1jQJSGlFKUaBVN6ANoFkdAmljXMQmNR3V9lChoBmgJaA9DCJG6nX3l2mFAlIaUUpRoFU3oA2gWR0CaWY1JlJ6IdX2UKGgGaAloD0MIPPceLrkhYkCUhpRSlGgVTegDaBZHQJpa2GGmDUV1fZQoaAZoCWgPQwgiGAeXTqlxQJSGlFKUaBVNIwNoFkdAmlr4YR/ViHV9lChoBmgJaA9DCOrr+ZrlHGRAlIaUUpRoFU3oA2gWR0CaWx5cC5mRdX2UKGgGaAloD0MI81oJ3SUpZUCUhpRSlGgVTegDaBZHQJpcvk1dgOV1fZQoaAZoCWgPQwiRtBt9zFcZQJSGlFKUaBVL12gWR0CaXcV3EAHWdX2UKGgGaAloD0MI2SH+YUuGYUCUhpRSlGgVTegDaBZHQJpfL8UEgW91fZQoaAZoCWgPQwjUuaKUEC5nQJSGlFKUaBVN6ANoFkdAmmD0bT+efHV9lChoBmgJaA9DCMQI4dHGo2RAlIaUUpRoFU3oA2gWR0CaYvmdAgPmdX2UKGgGaAloD0MIx2gdVU1oRkCUhpRSlGgVS/toFkdAmmV8aCL/CXV9lChoBmgJaA9DCFNA2v+AWGJAlIaUUpRoFU3oA2gWR0CaaITvAoG6dX2UKGgGaAloD0MIwK+RJIjkZUCUhpRSlGgVTegDaBZHQJp2usQumJp1fZQoaAZoCWgPQwgZG7rZn79jQJSGlFKUaBVN6ANoFkdAmntxq46OpHV9lChoBmgJaA9DCB5Robq57WFAlIaUUpRoFU3oA2gWR0CafGmDDjzadX2UKGgGaAloD0MI/dmPFBHEZUCUhpRSlGgVTegDaBZHQJqVT8AJb+t1fZQoaAZoCWgPQwiySBPvgGdgQJSGlFKUaBVN6ANoFkdAmp6GS+xnnXV9lChoBmgJaA9DCOHQWzy8x19AlIaUUpRoFU3oA2gWR0CanufthNM5dX2UKGgGaAloD0MIT5DY7p5hZECUhpRSlGgVTegDaBZHQJqfpyeZof11fZQoaAZoCWgPQwgU7L/OzTtmQJSGlFKUaBVN6ANoFkdAmqEWBe5WinV9lChoBmgJaA9DCNbgfVWuy2FAlIaUUpRoFU3oA2gWR0CaoVzNliBodX2UKGgGaAloD0MIu+1Ccx0ZYUCUhpRSlGgVTegDaBZHQJqjW7kGRmt1fZQoaAZoCWgPQwgDQBU37lZjQJSGlFKUaBVN6ANoFkdAmqSdvbXYlXV9lChoBmgJaA9DCHqNXaL6SWZAlIaUUpRoFU3oA2gWR0CapkPGyX2NdX2UKGgGaAloD0MIsoUgByU2Z0CUhpRSlGgVTegDaBZHQJqoSrJbMX91fZQoaAZoCWgPQwgPCkrRSvxkQJSGlFKUaBVN6ANoFkdAmqqRYmsvI3V9lChoBmgJaA9DCLyyCwZXTWZAlIaUUpRoFU3oA2gWR0CarVlAu7HydX2UKGgGaAloD0MIeEXwv5V2YUCUhpRSlGgVTegDaBZHQJqwo1vVEux1fZQoaAZoCWgPQwhdTgmIyU9iQJSGlFKUaBVN6ANoFkdAmsBcRYigTXV9lChoBmgJaA9DCPNWXYcqeHBAlIaUUpRoFU0wAmgWR0CaxPghr30xdX2UKGgGaAloD0MI4A8//72rY0CUhpRSlGgVTegDaBZHQJrE+THKfWd1fZQoaAZoCWgPQwgiwVQza+1hQJSGlFKUaBVN6ANoFkdAmsXVsDW9UXV9lChoBmgJaA9DCFX2XRF8tmVAlIaUUpRoFU3oA2gWR0Ca3lhwEQoTdX2UKGgGaAloD0MIXRd+cL5mbUCUhpRSlGgVTaECaBZHQJriOpyZKFt1fZQoaAZoCWgPQwhvSKMCJ35wQJSGlFKUaBVN3gNoFkdAmuYbJbMX8HV9lChoBmgJaA9DCHRd+MF5zGFAlIaUUpRoFU3oA2gWR0Ca5uSRbKRudX2UKGgGaAloD0MINpGZC1xgYkCUhpRSlGgVTegDaBZHQJrngaef7Jp1fZQoaAZoCWgPQwhag/dVuZJdQJSGlFKUaBVN6ANoFkdAmuijIV/MGHV9lChoBmgJaA9DCP1reeV6KWNAlIaUUpRoFU3oA2gWR0Ca6NxhUipvdX2UKGgGaAloD0MINLvurUiEZkCUhpRSlGgVTegDaBZHQJrqgJWvKU51fZQoaAZoCWgPQwinzM03IphmQJSGlFKUaBVN6ANoFkdAmuuDwDvE0nV9lChoBmgJaA9DCOzf9Zmz2FxAlIaUUpRoFU3oA2gWR0Ca7rKUFB6bdX2UKGgGaAloD0MIrKjBNIzEZkCUhpRSlGgVTegDaBZHQJrzrCdjG1h1fZQoaAZoCWgPQwhN+KV+3rNiQJSGlFKUaBVN6ANoFkdAmvcJbyH2y3V9lChoBmgJaA9DCLu04bA0s19AlIaUUpRoFU3oA2gWR0CbBldGAkLQdX2UKGgGaAloD0MIWrkXmBVJZUCUhpRSlGgVTegDaBZHQJsLRuTA31l1fZQoaAZoCWgPQwieew+XHP5lQJSGlFKUaBVN6ANoFkdAmwtHA/LTyHV9lChoBmgJaA9DCH7iAPp95WdAlIaUUpRoFU3oA2gWR0CbDC86FM7EdX2UKGgGaAloD0MIgosVNZgIZ0CUhpRSlGgVTegDaBZHQJslE2kzoEB1fZQoaAZoCWgPQwjP+SmOA3JgQJSGlFKUaBVN6ANoFkdAmylXLq2SdXV9lChoBmgJaA9DCKUSntDra19AlIaUUpRoFU3oA2gWR0CbLUhysCDFdX2UKGgGaAloD0MIN6eSAaC5ZECUhpRSlGgVTegDaBZHQJsuHocJdB11fZQoaAZoCWgPQwg/5C1XP5xiQJSGlFKUaBVN6ANoFkdAmy7Ekv9LpXV9lChoBmgJaA9DCK5+bJKfCGRAlIaUUpRoFU3oA2gWR0CbMABsANobdX2UKGgGaAloD0MIw9SWOkhEZECUhpRSlGgVTegDaBZHQJswP9ycTal1fZQoaAZoCWgPQwgwn6wYLiVnQJSGlFKUaBVN6ANoFkdAmzIIZZSvT3V9lChoBmgJaA9DCEzirIgaz2NAlIaUUpRoFU3oA2gWR0CbMzxm03OwdX2UKGgGaAloD0MI7iHhe/8hZUCUhpRSlGgVTegDaBZHQJs21mvnr6d1fZQoaAZoCWgPQwg5J/bQPnViQJSGlFKUaBVN6ANoFkdAmzy3lOoHcHV9lChoBmgJaA9DCAbWcfzQbGVAlIaUUpRoFU3oA2gWR0CbQHUHpr1vdX2UKGgGaAloD0MIsoAJ3Dq5Z0CUhpRSlGgVTegDaBZHQJtS8p+c6Nl1fZQoaAZoCWgPQwhn8WJhiPRcQJSGlFKUaBVN6ANoFkdAm1jGDg62fHV9lChoBmgJaA9DCCYeUDblX2ZAlIaUUpRoFU3oA2gWR0CbWMiRnvlVdX2UKGgGaAloD0MIILQevkw4Z0CUhpRSlGgVTegDaBZHQJtZ2eAd4ml1fZQoaAZoCWgPQwhdFajFYG5iQJSGlFKUaBVN6ANoFkdAm2B05hjOLXVlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:533a27203f041f94f9c02f74a768f76d9ea1331825dd31439ce1b49b6a1ea563
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d648b04f7e1e240d6073ebe2acdf883dbe511c278e9196c55c05f6778af4b000
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 261.0453579956477, "std_reward": 21.862420395329863, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-25T12:48:26.081228"}
|