rishipatel92 commited on
Commit
01d5415
1 Parent(s): 9050f64

Upload PPO LunarLander-v1 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.27 +/- 23.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5ceceaa8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5ceceaa940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5ceceaa9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5ceceaaa60>", "_build": "<function ActorCriticPolicy._build at 0x7f5ceceaaaf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5ceceaab80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5ceceaac10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5ceceaaca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5ceceaad30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5ceceaadc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5ceceaae50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5ceceaaee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5ceceac1c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678422707590364350, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCxD76WCrw/LvDLvhNZs77UCwS+YGEuvgAAAAAAAAAAE0QbvjQCZD/riDm+wlFTv9ZWEr4KYkw9AAAAAAAAAADNkOA7MaiQP+PizTyGB1O/JlPJuiJofjwAAAAAAAAAAMBeFL48WDA9wb6bPvrUNb49UKq7wnqAPQAAAAAAAAAAgORQPfZeuT+3y4w+jsYJvhmGxTwKiF89AAAAAAAAAABmmQc+NtS9P3eZMj9Ly0q91bqAPVCHVD4AAAAAAAAAAMbTRz7XEjI+ejR9vk+fr774NIQ9QiTHvQAAAAAAAAAAmjKTvGaRpT9SaAS+p8ILv+d2fzqncKA7AAAAAAAAAACmaPA9jP2KP5A1fz6lzT2/rFhCPjKK4roAAAAAAAAAALMw5D0paF2666Zovlu+TL7ab3C9iqJcPgAAAAAAAAAAyj+BPvNQQj8lpey4xRYrv/VcpT54O1O9AAAAAAAAAAAABmi8ewSQuiZvqzuzC8i4tVAWOw1owrcAAIA/AACAP5pZmLqIZ7o/4+ryvCbaiT5Om5U8soe3PQAAAAAAAAAAmvyTPSlMf7ougYG3vCPJsfyvF7vyxZU2AACAPwAAgD+zC509d++YPq1XG76nKA6/whzKPJg45r0AAAAAAAAAAIaIJT5Z7RI+Bhmcvt0B0b6SbI08pSHlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3Lkw0kurckCUhpRSlIwBbJRLzYwBdJRHQKBqUMrmQsB1fZQoaAZoCWgPQwjlt+hkKbBxQJSGlFKUaBVLymgWR0CgalWt2cJ/dX2UKGgGaAloD0MIjspN1NJ1cECUhpRSlGgVS8ZoFkdAoGpZH5Jsf3V9lChoBmgJaA9DCFch5SdVE3FAlIaUUpRoFUu1aBZHQKBqifoRqXZ1fZQoaAZoCWgPQwg+A+rNKG9yQJSGlFKUaBVL3WgWR0CgarSt/4IsdX2UKGgGaAloD0MIokPgSOC0c0CUhpRSlGgVS/1oFkdAoGq0MXrMT3V9lChoBmgJaA9DCJgxBWtcdnBAlIaUUpRoFUugaBZHQKBrJR5TqB51fZQoaAZoCWgPQwiyg0pcR0lwQJSGlFKUaBVL0GgWR0Cga0iKaXrudX2UKGgGaAloD0MIqYO8HgwBdECUhpRSlGgVS9FoFkdAoGtIFX7tRnV9lChoBmgJaA9DCDgsDfzomHFAlIaUUpRoFUuWaBZHQKBrWBg/keZ1fZQoaAZoCWgPQwiqLAq7qLVwQJSGlFKUaBVLwmgWR0Cga5f9pAUtdX2UKGgGaAloD0MI/fZ14FxccUCUhpRSlGgVS/BoFkdAoGum2kSElHV9lChoBmgJaA9DCAdfmEyV73FAlIaUUpRoFUvGaBZHQKBsWyquKXR1fZQoaAZoCWgPQwgjFcYWwoRyQJSGlFKUaBVLwmgWR0CgbIBmoR7JdX2UKGgGaAloD0MIJhsPtphbc0CUhpRSlGgVS7JoFkdAoGzRj6N2knV9lChoBmgJaA9DCOT4odII8XBAlIaUUpRoFUu1aBZHQKB4o85CF9N1fZQoaAZoCWgPQwgQd/Uqsp9vQJSGlFKUaBVLsGgWR0CgeLtN8E3bdX2UKGgGaAloD0MIU8+CUN5ucUCUhpRSlGgVS+BoFkdAoHjLvTgEU3V9lChoBmgJaA9DCF/ObFeoSXNAlIaUUpRoFUvSaBZHQKB40bwSamZ1fZQoaAZoCWgPQwg/5C1Xv2dwQJSGlFKUaBVLt2gWR0CgeOelsP8RdX2UKGgGaAloD0MI9kIB24FPcECUhpRSlGgVS7loFkdAoHjqGvfTC3V9lChoBmgJaA9DCOSjxRlDIW9AlIaUUpRoFUu7aBZHQKB5N3bmEGt1fZQoaAZoCWgPQwiwARHiipNxQJSGlFKUaBVL1GgWR0CgeZbnX/YKdX2UKGgGaAloD0MIVrd6Tnrqc0CUhpRSlGgVTSIBaBZHQKB5qpBomHB1fZQoaAZoCWgPQwgbn8n+uUpxQJSGlFKUaBVLqWgWR0CgeeB7E5yVdX2UKGgGaAloD0MIgA2IEBe+ckCUhpRSlGgVS/ZoFkdAoHnkKPXCj3V9lChoBmgJaA9DCLCPTl25SXJAlIaUUpRoFUvjaBZHQKB57ZjhDPZ1fZQoaAZoCWgPQwi4OgDiblxyQJSGlFKUaBVL4mgWR0CgefWf9P1tdX2UKGgGaAloD0MIU5YhjjV0cUCUhpRSlGgVS8hoFkdAoHpC2tuDSXV9lChoBmgJaA9DCIY97fCXpnJAlIaUUpRoFU0fAWgWR0CgekkQXhwVdX2UKGgGaAloD0MIDD7NyQtXbkCUhpRSlGgVS6doFkdAoHpQwRGtp3V9lChoBmgJaA9DCEgWMIGbSnFAlIaUUpRoFUvHaBZHQKB6gAJ9iMJ1fZQoaAZoCWgPQwgyAFRx49ZPQJSGlFKUaBVLp2gWR0CgeoSmIj4YdX2UKGgGaAloD0MIwyy0cxrJcUCUhpRSlGgVS85oFkdAoHqbwWnCO3V9lChoBmgJaA9DCDPgLCULTnJAlIaUUpRoFUu/aBZHQKB6nyPMjeN1fZQoaAZoCWgPQwjg2LPnsixvQJSGlFKUaBVLuWgWR0Cgev5fMOf/dX2UKGgGaAloD0MI9dVVgRoZckCUhpRSlGgVS+toFkdAoHsLwUg0THV9lChoBmgJaA9DCO0L6IX7JHJAlIaUUpRoFUuoaBZHQKB7fpZfUnZ1fZQoaAZoCWgPQwh2Gf7TzRhyQJSGlFKUaBVLqGgWR0Cge4Kkl/pddX2UKGgGaAloD0MI1F+vsCC6cECUhpRSlGgVS81oFkdAoHuVeF+NLnV9lChoBmgJaA9DCI8c6QzM7XBAlIaUUpRoFUvKaBZHQKB7oMG5c1R1fZQoaAZoCWgPQwiwx0RKc9hwQJSGlFKUaBVLsGgWR0Cge6fJ3gUDdX2UKGgGaAloD0MICTcZVYYycUCUhpRSlGgVTUABaBZHQKB7+qy4Wk91fZQoaAZoCWgPQwjiHksf+hJzQJSGlFKUaBVLsmgWR0CgfAJqh11XdX2UKGgGaAloD0MIFa3cC4wNc0CUhpRSlGgVS8BoFkdAoHwu+dsi0XV9lChoBmgJaA9DCKpgVFInCkxAlIaUUpRoFUulaBZHQKB8NbDdgv11fZQoaAZoCWgPQwj1MLQ6+VxwQJSGlFKUaBVLp2gWR0CgfD6bnX/YdX2UKGgGaAloD0MIrvGZ7B+ZckCUhpRSlGgVS/RoFkdAoHxIiHIp6XV9lChoBmgJaA9DCHEfuTUpn3BAlIaUUpRoFUu8aBZHQKB8UKb8WKx1fZQoaAZoCWgPQwieBgySPtRxQJSGlFKUaBVLrmgWR0CgfK6DwpfAdX2UKGgGaAloD0MIqu/8ooTMcUCUhpRSlGgVS/xoFkdAoHyu6mO2iXV9lChoBmgJaA9DCLTk8bQ8rHNAlIaUUpRoFUvkaBZHQKB8s3solUp1fZQoaAZoCWgPQwgMBWwH4w1wQJSGlFKUaBVLtGgWR0CgfMhltj0+dX2UKGgGaAloD0MI6J/gYsUfcECUhpRSlGgVS6hoFkdAoH0ODrZ8KHV9lChoBmgJaA9DCBqnIaowA3JAlIaUUpRoFUudaBZHQKB9GSteUpx1fZQoaAZoCWgPQwhjKv2EcydxQJSGlFKUaBVLq2gWR0CgfTL56+nJdX2UKGgGaAloD0MIY5gTtInycUCUhpRSlGgVS+1oFkdAoH2uPFNtZXV9lChoBmgJaA9DCA3C3O5l0XFAlIaUUpRoFUvEaBZHQKB9wkuYhMd1fZQoaAZoCWgPQwhdaoR+JjJzQJSGlFKUaBVL92gWR0Cgfdj5sTFmdX2UKGgGaAloD0MIeLZHbzh7cUCUhpRSlGgVS7NoFkdAoH3refqX4XV9lChoBmgJaA9DCI81I4MccnFAlIaUUpRoFUvDaBZHQKB9748lolF1fZQoaAZoCWgPQwh7Eticw6RyQJSGlFKUaBVL3GgWR0CgfgDLbHp9dX2UKGgGaAloD0MIQxoVOJlUcECUhpRSlGgVS8JoFkdAoH4FEAo5P3V9lChoBmgJaA9DCHYzox8Nq29AlIaUUpRoFUvPaBZHQKB+D76YVqN1fZQoaAZoCWgPQwjR6uQMBf1yQJSGlFKUaBVL0mgWR0CgfhwyZa3adX2UKGgGaAloD0MIlumXiLfWMkCUhpRSlGgVS3hoFkdAoH4o95hScnV9lChoBmgJaA9DCGMLQQ4KrHJAlIaUUpRoFUu1aBZHQKB+QxmCiAV1fZQoaAZoCWgPQwiT4A1pFNlxQJSGlFKUaBVLumgWR0Cgfkk4//vOdX2UKGgGaAloD0MI2uOFdLjackCUhpRSlGgVS8xoFkdAoH5sAq/dqXV9lChoBmgJaA9DCHh8e9cg5nFAlIaUUpRoFUvCaBZHQKB+b0nw5Np1fZQoaAZoCWgPQwg3VIzzN4JuQJSGlFKUaBVLrGgWR0CgfoNiQT24dX2UKGgGaAloD0MIp7BSQcUEc0CUhpRSlGgVTQEBaBZHQKB/fPBzmwJ1fZQoaAZoCWgPQwjJk6Rr5nVxQJSGlFKUaBVLzGgWR0Cgf3/R/mT1dX2UKGgGaAloD0MIhjyCG2lYcECUhpRSlGgVS7JoFkdAoH+py+6AfHV9lChoBmgJaA9DCKM9XkiHI3FAlIaUUpRoFUvKaBZHQKB/qb9ZRsN1fZQoaAZoCWgPQwipEmVvKS9xQJSGlFKUaBVLx2gWR0Cgf7Zdv864dX2UKGgGaAloD0MIPWU1XU9FcUCUhpRSlGgVS8toFkdAoH/EnXumanV9lChoBmgJaA9DCOIgIcqXKG9AlIaUUpRoFUu4aBZHQKB/ySowVTJ1fZQoaAZoCWgPQwhCJhk5C0RyQJSGlFKUaBVL62gWR0Cgf+I/JNj9dX2UKGgGaAloD0MIKCuGq4Mcc0CUhpRSlGgVS9hoFkdAoH/3jKgZj3V9lChoBmgJaA9DCKKXUSy3W3BAlIaUUpRoFUu+aBZHQKCABzQNTcZ1fZQoaAZoCWgPQwialIJub/NwQJSGlFKUaBVLtWgWR0CggCOqebuudX2UKGgGaAloD0MI4IRCBJw1ckCUhpRSlGgVS/FoFkdAoIAupZOi4HV9lChoBmgJaA9DCOTziqeey3FAlIaUUpRoFUu5aBZHQKCAMNpdrwh1fZQoaAZoCWgPQwipTZzc73lxQJSGlFKUaBVLwGgWR0CggFefh/AkdX2UKGgGaAloD0MIQ1iNJaw7cUCUhpRSlGgVS99oFkdAoIBbLEDQq3V9lChoBmgJaA9DCFn3j4WoBHRAlIaUUpRoFU0gAWgWR0CggNNX5nDjdX2UKGgGaAloD0MIcXK/Q1FQRECUhpRSlGgVS39oFkdAoIDh/I8yOHV9lChoBmgJaA9DCLMIxVbQfXNAlIaUUpRoFUu1aBZHQKCBbaYeDFt1fZQoaAZoCWgPQwg7jh8qTYFwQJSGlFKUaBVLrmgWR0CggYuyE+PjdX2UKGgGaAloD0MIb/QxH9DXckCUhpRSlGgVS8doFkdAoIGsMVk+YHV9lChoBmgJaA9DCGEzwAUZcXJAlIaUUpRoFUu9aBZHQKCB1EH+qBF1fZQoaAZoCWgPQwhHWipvhyRzQJSGlFKUaBVLwmgWR0CggfbqIJqqdX2UKGgGaAloD0MIrTWU2osGcUCUhpRSlGgVS89oFkdAoIInDcdo4HV9lChoBmgJaA9DCLe28LxU4HJAlIaUUpRoFUunaBZHQKCCNoexOcl1fZQoaAZoCWgPQwiSdqOPuVdwQJSGlFKUaBVL02gWR0CgglbeVLSNdX2UKGgGaAloD0MIIEPHDioAbkCUhpRSlGgVS69oFkdAoIKEedTYNHV9lChoBmgJaA9DCABSmzh5NHFAlIaUUpRoFUvBaBZHQKCChOWSlnB1fZQoaAZoCWgPQwi2TfG46GFyQJSGlFKUaBVL3GgWR0CggpDa4+bFdX2UKGgGaAloD0MIjURoBJsPckCUhpRSlGgVS9FoFkdAoIKoikfs/3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 615, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f3c8d625c632c84bd1e676e8da1e611da63ae42d4ba635d7c3cb86bfdaf747b
3
+ size 147304
ppo-LunarLander-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v1/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5ceceaa8b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5ceceaa940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5ceceaa9d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5ceceaaa60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5ceceaaaf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5ceceaab80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5ceceaac10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5ceceaaca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5ceceaad30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5ceceaadc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5ceceaae50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5ceceaaee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f5ceceac1c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 2015232,
47
+ "_total_timesteps": 2000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678422707590364350,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCxD76WCrw/LvDLvhNZs77UCwS+YGEuvgAAAAAAAAAAE0QbvjQCZD/riDm+wlFTv9ZWEr4KYkw9AAAAAAAAAADNkOA7MaiQP+PizTyGB1O/JlPJuiJofjwAAAAAAAAAAMBeFL48WDA9wb6bPvrUNb49UKq7wnqAPQAAAAAAAAAAgORQPfZeuT+3y4w+jsYJvhmGxTwKiF89AAAAAAAAAABmmQc+NtS9P3eZMj9Ly0q91bqAPVCHVD4AAAAAAAAAAMbTRz7XEjI+ejR9vk+fr774NIQ9QiTHvQAAAAAAAAAAmjKTvGaRpT9SaAS+p8ILv+d2fzqncKA7AAAAAAAAAACmaPA9jP2KP5A1fz6lzT2/rFhCPjKK4roAAAAAAAAAALMw5D0paF2666Zovlu+TL7ab3C9iqJcPgAAAAAAAAAAyj+BPvNQQj8lpey4xRYrv/VcpT54O1O9AAAAAAAAAAAABmi8ewSQuiZvqzuzC8i4tVAWOw1owrcAAIA/AACAP5pZmLqIZ7o/4+ryvCbaiT5Om5U8soe3PQAAAAAAAAAAmvyTPSlMf7ougYG3vCPJsfyvF7vyxZU2AACAPwAAgD+zC509d++YPq1XG76nKA6/whzKPJg45r0AAAAAAAAAAIaIJT5Z7RI+Bhmcvt0B0b6SbI08pSHlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.007616000000000067,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3Lkw0kurckCUhpRSlIwBbJRLzYwBdJRHQKBqUMrmQsB1fZQoaAZoCWgPQwjlt+hkKbBxQJSGlFKUaBVLymgWR0CgalWt2cJ/dX2UKGgGaAloD0MIjspN1NJ1cECUhpRSlGgVS8ZoFkdAoGpZH5Jsf3V9lChoBmgJaA9DCFch5SdVE3FAlIaUUpRoFUu1aBZHQKBqifoRqXZ1fZQoaAZoCWgPQwg+A+rNKG9yQJSGlFKUaBVL3WgWR0CgarSt/4IsdX2UKGgGaAloD0MIokPgSOC0c0CUhpRSlGgVS/1oFkdAoGq0MXrMT3V9lChoBmgJaA9DCJgxBWtcdnBAlIaUUpRoFUugaBZHQKBrJR5TqB51fZQoaAZoCWgPQwiyg0pcR0lwQJSGlFKUaBVL0GgWR0Cga0iKaXrudX2UKGgGaAloD0MIqYO8HgwBdECUhpRSlGgVS9FoFkdAoGtIFX7tRnV9lChoBmgJaA9DCDgsDfzomHFAlIaUUpRoFUuWaBZHQKBrWBg/keZ1fZQoaAZoCWgPQwiqLAq7qLVwQJSGlFKUaBVLwmgWR0Cga5f9pAUtdX2UKGgGaAloD0MI/fZ14FxccUCUhpRSlGgVS/BoFkdAoGum2kSElHV9lChoBmgJaA9DCAdfmEyV73FAlIaUUpRoFUvGaBZHQKBsWyquKXR1fZQoaAZoCWgPQwgjFcYWwoRyQJSGlFKUaBVLwmgWR0CgbIBmoR7JdX2UKGgGaAloD0MIJhsPtphbc0CUhpRSlGgVS7JoFkdAoGzRj6N2knV9lChoBmgJaA9DCOT4odII8XBAlIaUUpRoFUu1aBZHQKB4o85CF9N1fZQoaAZoCWgPQwgQd/Uqsp9vQJSGlFKUaBVLsGgWR0CgeLtN8E3bdX2UKGgGaAloD0MIU8+CUN5ucUCUhpRSlGgVS+BoFkdAoHjLvTgEU3V9lChoBmgJaA9DCF/ObFeoSXNAlIaUUpRoFUvSaBZHQKB40bwSamZ1fZQoaAZoCWgPQwg/5C1Xv2dwQJSGlFKUaBVLt2gWR0CgeOelsP8RdX2UKGgGaAloD0MI9kIB24FPcECUhpRSlGgVS7loFkdAoHjqGvfTC3V9lChoBmgJaA9DCOSjxRlDIW9AlIaUUpRoFUu7aBZHQKB5N3bmEGt1fZQoaAZoCWgPQwiwARHiipNxQJSGlFKUaBVL1GgWR0CgeZbnX/YKdX2UKGgGaAloD0MIVrd6Tnrqc0CUhpRSlGgVTSIBaBZHQKB5qpBomHB1fZQoaAZoCWgPQwgbn8n+uUpxQJSGlFKUaBVLqWgWR0CgeeB7E5yVdX2UKGgGaAloD0MIgA2IEBe+ckCUhpRSlGgVS/ZoFkdAoHnkKPXCj3V9lChoBmgJaA9DCLCPTl25SXJAlIaUUpRoFUvjaBZHQKB57ZjhDPZ1fZQoaAZoCWgPQwi4OgDiblxyQJSGlFKUaBVL4mgWR0CgefWf9P1tdX2UKGgGaAloD0MIU5YhjjV0cUCUhpRSlGgVS8hoFkdAoHpC2tuDSXV9lChoBmgJaA9DCIY97fCXpnJAlIaUUpRoFU0fAWgWR0CgekkQXhwVdX2UKGgGaAloD0MIDD7NyQtXbkCUhpRSlGgVS6doFkdAoHpQwRGtp3V9lChoBmgJaA9DCEgWMIGbSnFAlIaUUpRoFUvHaBZHQKB6gAJ9iMJ1fZQoaAZoCWgPQwgyAFRx49ZPQJSGlFKUaBVLp2gWR0CgeoSmIj4YdX2UKGgGaAloD0MIwyy0cxrJcUCUhpRSlGgVS85oFkdAoHqbwWnCO3V9lChoBmgJaA9DCDPgLCULTnJAlIaUUpRoFUu/aBZHQKB6nyPMjeN1fZQoaAZoCWgPQwjg2LPnsixvQJSGlFKUaBVLuWgWR0Cgev5fMOf/dX2UKGgGaAloD0MI9dVVgRoZckCUhpRSlGgVS+toFkdAoHsLwUg0THV9lChoBmgJaA9DCO0L6IX7JHJAlIaUUpRoFUuoaBZHQKB7fpZfUnZ1fZQoaAZoCWgPQwh2Gf7TzRhyQJSGlFKUaBVLqGgWR0Cge4Kkl/pddX2UKGgGaAloD0MI1F+vsCC6cECUhpRSlGgVS81oFkdAoHuVeF+NLnV9lChoBmgJaA9DCI8c6QzM7XBAlIaUUpRoFUvKaBZHQKB7oMG5c1R1fZQoaAZoCWgPQwiwx0RKc9hwQJSGlFKUaBVLsGgWR0Cge6fJ3gUDdX2UKGgGaAloD0MICTcZVYYycUCUhpRSlGgVTUABaBZHQKB7+qy4Wk91fZQoaAZoCWgPQwjiHksf+hJzQJSGlFKUaBVLsmgWR0CgfAJqh11XdX2UKGgGaAloD0MIFa3cC4wNc0CUhpRSlGgVS8BoFkdAoHwu+dsi0XV9lChoBmgJaA9DCKpgVFInCkxAlIaUUpRoFUulaBZHQKB8NbDdgv11fZQoaAZoCWgPQwj1MLQ6+VxwQJSGlFKUaBVLp2gWR0CgfD6bnX/YdX2UKGgGaAloD0MIrvGZ7B+ZckCUhpRSlGgVS/RoFkdAoHxIiHIp6XV9lChoBmgJaA9DCHEfuTUpn3BAlIaUUpRoFUu8aBZHQKB8UKb8WKx1fZQoaAZoCWgPQwieBgySPtRxQJSGlFKUaBVLrmgWR0CgfK6DwpfAdX2UKGgGaAloD0MIqu/8ooTMcUCUhpRSlGgVS/xoFkdAoHyu6mO2iXV9lChoBmgJaA9DCLTk8bQ8rHNAlIaUUpRoFUvkaBZHQKB8s3solUp1fZQoaAZoCWgPQwgMBWwH4w1wQJSGlFKUaBVLtGgWR0CgfMhltj0+dX2UKGgGaAloD0MI6J/gYsUfcECUhpRSlGgVS6hoFkdAoH0ODrZ8KHV9lChoBmgJaA9DCBqnIaowA3JAlIaUUpRoFUudaBZHQKB9GSteUpx1fZQoaAZoCWgPQwhjKv2EcydxQJSGlFKUaBVLq2gWR0CgfTL56+nJdX2UKGgGaAloD0MIY5gTtInycUCUhpRSlGgVS+1oFkdAoH2uPFNtZXV9lChoBmgJaA9DCA3C3O5l0XFAlIaUUpRoFUvEaBZHQKB9wkuYhMd1fZQoaAZoCWgPQwhdaoR+JjJzQJSGlFKUaBVL92gWR0Cgfdj5sTFmdX2UKGgGaAloD0MIeLZHbzh7cUCUhpRSlGgVS7NoFkdAoH3refqX4XV9lChoBmgJaA9DCI81I4MccnFAlIaUUpRoFUvDaBZHQKB9748lolF1fZQoaAZoCWgPQwh7Eticw6RyQJSGlFKUaBVL3GgWR0CgfgDLbHp9dX2UKGgGaAloD0MIQxoVOJlUcECUhpRSlGgVS8JoFkdAoH4FEAo5P3V9lChoBmgJaA9DCHYzox8Nq29AlIaUUpRoFUvPaBZHQKB+D76YVqN1fZQoaAZoCWgPQwjR6uQMBf1yQJSGlFKUaBVL0mgWR0CgfhwyZa3adX2UKGgGaAloD0MIlumXiLfWMkCUhpRSlGgVS3hoFkdAoH4o95hScnV9lChoBmgJaA9DCGMLQQ4KrHJAlIaUUpRoFUu1aBZHQKB+QxmCiAV1fZQoaAZoCWgPQwiT4A1pFNlxQJSGlFKUaBVLumgWR0Cgfkk4//vOdX2UKGgGaAloD0MI2uOFdLjackCUhpRSlGgVS8xoFkdAoH5sAq/dqXV9lChoBmgJaA9DCHh8e9cg5nFAlIaUUpRoFUvCaBZHQKB+b0nw5Np1fZQoaAZoCWgPQwg3VIzzN4JuQJSGlFKUaBVLrGgWR0CgfoNiQT24dX2UKGgGaAloD0MIp7BSQcUEc0CUhpRSlGgVTQEBaBZHQKB/fPBzmwJ1fZQoaAZoCWgPQwjJk6Rr5nVxQJSGlFKUaBVLzGgWR0Cgf3/R/mT1dX2UKGgGaAloD0MIhjyCG2lYcECUhpRSlGgVS7JoFkdAoH+py+6AfHV9lChoBmgJaA9DCKM9XkiHI3FAlIaUUpRoFUvKaBZHQKB/qb9ZRsN1fZQoaAZoCWgPQwipEmVvKS9xQJSGlFKUaBVLx2gWR0Cgf7Zdv864dX2UKGgGaAloD0MIPWU1XU9FcUCUhpRSlGgVS8toFkdAoH/EnXumanV9lChoBmgJaA9DCOIgIcqXKG9AlIaUUpRoFUu4aBZHQKB/ySowVTJ1fZQoaAZoCWgPQwhCJhk5C0RyQJSGlFKUaBVL62gWR0Cgf+I/JNj9dX2UKGgGaAloD0MIKCuGq4Mcc0CUhpRSlGgVS9hoFkdAoH/3jKgZj3V9lChoBmgJaA9DCKKXUSy3W3BAlIaUUpRoFUu+aBZHQKCABzQNTcZ1fZQoaAZoCWgPQwialIJub/NwQJSGlFKUaBVLtWgWR0CggCOqebuudX2UKGgGaAloD0MI4IRCBJw1ckCUhpRSlGgVS/FoFkdAoIAupZOi4HV9lChoBmgJaA9DCOTziqeey3FAlIaUUpRoFUu5aBZHQKCAMNpdrwh1fZQoaAZoCWgPQwipTZzc73lxQJSGlFKUaBVLwGgWR0CggFefh/AkdX2UKGgGaAloD0MIQ1iNJaw7cUCUhpRSlGgVS99oFkdAoIBbLEDQq3V9lChoBmgJaA9DCFn3j4WoBHRAlIaUUpRoFU0gAWgWR0CggNNX5nDjdX2UKGgGaAloD0MIcXK/Q1FQRECUhpRSlGgVS39oFkdAoIDh/I8yOHV9lChoBmgJaA9DCLMIxVbQfXNAlIaUUpRoFUu1aBZHQKCBbaYeDFt1fZQoaAZoCWgPQwg7jh8qTYFwQJSGlFKUaBVLrmgWR0CggYuyE+PjdX2UKGgGaAloD0MIb/QxH9DXckCUhpRSlGgVS8doFkdAoIGsMVk+YHV9lChoBmgJaA9DCGEzwAUZcXJAlIaUUpRoFUu9aBZHQKCB1EH+qBF1fZQoaAZoCWgPQwhHWipvhyRzQJSGlFKUaBVLwmgWR0CggfbqIJqqdX2UKGgGaAloD0MIrTWU2osGcUCUhpRSlGgVS89oFkdAoIInDcdo4HV9lChoBmgJaA9DCLe28LxU4HJAlIaUUpRoFUunaBZHQKCCNoexOcl1fZQoaAZoCWgPQwiSdqOPuVdwQJSGlFKUaBVL02gWR0CgglbeVLSNdX2UKGgGaAloD0MIIEPHDioAbkCUhpRSlGgVS69oFkdAoIKEedTYNHV9lChoBmgJaA9DCABSmzh5NHFAlIaUUpRoFUvBaBZHQKCChOWSlnB1fZQoaAZoCWgPQwi2TfG46GFyQJSGlFKUaBVL3GgWR0CggpDa4+bFdX2UKGgGaAloD0MIjURoBJsPckCUhpRSlGgVS9FoFkdAoIKoikfs/3VlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 615,
80
+ "n_steps": 1024,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 5,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b8767abb830d74d788a146da344ee5af3bcb8b4c2fa59f4923a0b18eaca8175
3
+ size 87929
ppo-LunarLander-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcbcb3544a62e833634a24d093b72f0e6aed4c7221d309b51246fa0536fdae79
3
+ size 43393
ppo-LunarLander-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (210 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.267941279306, "std_reward": 23.277501257294528, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-10T05:06:31.105630"}