|
model: |
|
base_learning_rate: 1.0e-04 |
|
target: ldm.models.diffusion.ddpm.LatentDiffusion |
|
params: |
|
linear_start: 0.00085 |
|
linear_end: 0.0120 |
|
num_timesteps_cond: 1 |
|
log_every_t: 200 |
|
timesteps: 1000 |
|
first_stage_key: "image" |
|
cond_stage_key: "txt" |
|
image_size: 64 |
|
channels: 4 |
|
cond_stage_trainable: false |
|
conditioning_key: crossattn |
|
scale_factor: 0.18215 |
|
|
|
scheduler_config: |
|
target: ldm.lr_scheduler.LambdaLinearScheduler |
|
params: |
|
warm_up_steps: [ 1 ] |
|
cycle_lengths: [ 10000000000000 ] |
|
f_start: [ 1.e-6 ] |
|
f_max: [ 1. ] |
|
f_min: [ 1. ] |
|
|
|
unet_config: |
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel |
|
params: |
|
image_size: 32 |
|
in_channels: 4 |
|
out_channels: 4 |
|
model_channels: 320 |
|
attention_resolutions: [ 4, 2, 1 ] |
|
num_res_blocks: 2 |
|
channel_mult: [ 1, 2, 4, 4 ] |
|
num_heads: 8 |
|
use_spatial_transformer: True |
|
transformer_depth: 1 |
|
context_dim: 768 |
|
use_checkpoint: True |
|
legacy: False |
|
|
|
first_stage_config: |
|
target: ldm.models.autoencoder.AutoencoderKL |
|
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt" |
|
params: |
|
embed_dim: 4 |
|
monitor: val/rec_loss |
|
ddconfig: |
|
double_z: true |
|
z_channels: 4 |
|
resolution: 256 |
|
in_channels: 3 |
|
out_ch: 3 |
|
ch: 128 |
|
ch_mult: |
|
- 1 |
|
- 2 |
|
- 4 |
|
- 4 |
|
num_res_blocks: 2 |
|
attn_resolutions: [] |
|
dropout: 0.0 |
|
lossconfig: |
|
target: torch.nn.Identity |
|
|
|
cond_stage_config: |
|
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder |
|
|
|
|
|
data: |
|
target: main.DataModuleFromConfig |
|
params: |
|
batch_size: 4 |
|
num_workers: 4 |
|
num_val_workers: 0 |
|
train: |
|
target: FineTunedModel.simple.hf_dataset |
|
params: |
|
name: "FineTunedModel/dataset" |
|
image_transforms: |
|
- target: torchvision.transforms.Resize |
|
params: |
|
size: 512 |
|
interpolation: 3 |
|
- target: torchvision.transforms.RandomCrop |
|
params: |
|
size: 512 |
|
- target: torchvision.transforms.RandomHorizontalFlip |
|
validation: |
|
target: ldm.data.simple.TextOnly |
|
params: |
|
captions: |
|
- "Rick and Morty tatoo" |
|
- "ship and sea" |
|
- "moon sphere" |
|
- "cat and heart" |
|
output_size: 512 |
|
n_gpus: 4 |
|
|
|
|
|
lightning: |
|
find_unused_parameters: False |
|
|
|
modelcheckpoint: |
|
params: |
|
every_n_train_steps: 2000 |
|
save_top_k: -1 |
|
monitor: null |
|
|
|
callbacks: |
|
image_logger: |
|
target: main.ImageLogger |
|
params: |
|
batch_frequency: 2000 |
|
max_images: 4 |
|
increase_log_steps: False |
|
log_first_step: True |
|
log_all_val: True |
|
log_images_kwargs: |
|
use_ema_scope: True |
|
inpaint: False |
|
plot_progressive_rows: False |
|
plot_diffusion_rows: False |
|
N: 4 |
|
unconditional_guidance_scale: 3.0 |
|
unconditional_guidance_label: [""] |
|
|
|
trainer: |
|
benchmark: True |
|
num_sanity_val_steps: 0 |
|
accumulate_grad_batches: 1 |
|
|