rideadragon commited on
Commit
b4fe5cf
·
1 Parent(s): 6b57ba6

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.05 +/- 15.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1eb6561550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1eb65615e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1eb6561670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1eb6561700>", "_build": "<function ActorCriticPolicy._build at 0x7f1eb6561790>", "forward": "<function ActorCriticPolicy.forward at 0x7f1eb6561820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1eb65618b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1eb6561940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1eb65619d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1eb6561a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1eb6561af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1eb6561b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1eb64e8fc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679849150744171084, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZR0D3DuQ+68x7ntl4X3rD98s+5JpEJNgAAAAAAAIA/RkcWPlfXgj6u58a+caXGvkHek71cq0u9AAAAAAAAAAAafCW96CjYPgh6crzyeKy+29G1u9CmhrsAAAAAAAAAADMPQL3cLx4+gGAfPssNTb57Agg9VemVOwAAAAAAAAAAAEwtvaT0Pzq01AW82tXSPGZa37tHfLm9AACAPwAAgD/NKha8VLtcPtrhBj1P+Y6+NQNevV0qlDwAAAAAAAAAAI2dQT5M2Ls+KP6ivhqbwb7mtmw87+WKvQAAAAAAAAAApjqivSkIXbqJ/hc5QgEBNOdY1jr8ETK4AAAAAAAAgD8z63I93DI4vAPbmLv0y5Q8BVWkPUpwdL0AAIA/AACAP80917zS8fi7Ci6EO2mQljx8hU29Tdt7PQAAgD8AAIA/ZpbROw8sJj6+wEu936CivkcnXr3nhsM8AAAAAAAAAACAkOG9cTHrPTd7KT5iyxq+lzmDvR4pPj0AAAAAAAAAAJqbIrz01XQ+CoPbvSRviL7bQou99nwLuwAAAAAAAAAAZpCcPA55tD8l83g+bQSxvUJNizx/fSI+AAAAAAAAAADgsmk+USLrPtL/Nb7gQOy+8RuLPfqiKb0AAAAAAAAAADNV1ry5iFE/Wkn8vHFZA7/V1Vs9xlH6vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISUc5mE2Cb0CUhpRSlIwBbJRL/owBdJRHQJ3RXiYLLIR1fZQoaAZoCWgPQwgAyAkThndyQJSGlFKUaBVNHAFoFkdAndF8uJ1q33V9lChoBmgJaA9DCIoCfSLPxHFAlIaUUpRoFUvSaBZHQJ3Ry3Td+G51fZQoaAZoCWgPQwhd4sgDkTNIQJSGlFKUaBVN6ANoFkdAndHieyzHCHV9lChoBmgJaA9DCHUBLzPsOXBAlIaUUpRoFUvOaBZHQJ3SAoAn2Ix1fZQoaAZoCWgPQwi0OjlDcXtyQJSGlFKUaBVNUAFoFkdAndInVf/m1nV9lChoBmgJaA9DCAu2EU92W3FAlIaUUpRoFUvraBZHQJ3TbYkE9uB1fZQoaAZoCWgPQwiAK9mxUQFwQJSGlFKUaBVNIgFoFkdAndSEY8+zMXV9lChoBmgJaA9DCFq6gm1EQnFAlIaUUpRoFU0YAWgWR0Cd1NXXAdn1dX2UKGgGaAloD0MI0H8PXrt1b0CUhpRSlGgVS+toFkdAndT9ZNfw7XV9lChoBmgJaA9DCLzLRXwnM3BAlIaUUpRoFU1GAWgWR0Cd1YHUtqYadX2UKGgGaAloD0MIW3nJ/2TBckCUhpRSlGgVS/ZoFkdAndXjAvcrRXV9lChoBmgJaA9DCPSHZp7cS3FAlIaUUpRoFUvzaBZHQJ3WtFCswL51fZQoaAZoCWgPQwjiH7b06JRwQJSGlFKUaBVL82gWR0Cd1yWAPNFCdX2UKGgGaAloD0MIb7iP3BqlcUCUhpRSlGgVS9JoFkdAnddH18LKFXV9lChoBmgJaA9DCKc7Tzwn6XJAlIaUUpRoFU0EAWgWR0Cd2LQpnYg8dX2UKGgGaAloD0MIJXmu70M7c0CUhpRSlGgVS/9oFkdAndoe5SWJJ3V9lChoBmgJaA9DCEyln3D2+HJAlIaUUpRoFU1yAWgWR0Cd2h6zVtoBdX2UKGgGaAloD0MIz0vFxnzFckCUhpRSlGgVTScBaBZHQJ3anphWo3t1fZQoaAZoCWgPQwhs6GZ/oENyQJSGlFKUaBVNHAFoFkdAndsDIikftHV9lChoBmgJaA9DCL9DUaDPDXRAlIaUUpRoFUvtaBZHQJ3bm+/QBxR1fZQoaAZoCWgPQwgbf6KyIR5wQJSGlFKUaBVNNgFoFkdAndu1Cw8nu3V9lChoBmgJaA9DCPMbJhokOXNAlIaUUpRoFU1HAWgWR0Cd3GrCFbmmdX2UKGgGaAloD0MInWUWodg6cECUhpRSlGgVS/BoFkdAnd0UEHMUy3V9lChoBmgJaA9DCMJrlzYcjW1AlIaUUpRoFUvgaBZHQJ3dqpPykKx1fZQoaAZoCWgPQwh6qkNuhtpxQJSGlFKUaBVNAAFoFkdAnd4HoTwlSnV9lChoBmgJaA9DCB8RUyLJPnBAlIaUUpRoFUvTaBZHQJ3fPo0Q9Rt1fZQoaAZoCWgPQwhpUZ/kjg9zQJSGlFKUaBVNFAFoFkdAneBVPi1iOXV9lChoBmgJaA9DCIaSyakd0XBAlIaUUpRoFU1AAWgWR0Cd4OGNJe3QdX2UKGgGaAloD0MI+7DeqJW0ckCUhpRSlGgVS/9oFkdAneFLLpzLfXV9lChoBmgJaA9DCKErEag+mHFAlIaUUpRoFU0EAWgWR0Cd4wxKQJXydX2UKGgGaAloD0MIGJgVinTtbECUhpRSlGgVS+toFkdAneNpBHCoCXV9lChoBmgJaA9DCOV/8nfvKHJAlIaUUpRoFUvuaBZHQJ3kF+az/qB1fZQoaAZoCWgPQwjnN0w0iHpyQJSGlFKUaBVNUwFoFkdAneRdeMQ2/HV9lChoBmgJaA9DCG3Jqgh3iXJAlIaUUpRoFUv5aBZHQJ3k/4Kx9oh1fZQoaAZoCWgPQwhxrIvbKFRxQJSGlFKUaBVL8GgWR0Cd5WbD/EOzdX2UKGgGaAloD0MIRdREn0/fcUCUhpRSlGgVTRsBaBZHQJ3lgNG3F1l1fZQoaAZoCWgPQwgouFhRA6ZuQJSGlFKUaBVL7GgWR0Cd5goybhFWdX2UKGgGaAloD0MIQzhm2ZPXcUCUhpRSlGgVS/BoFkdAnebu45Lh73V9lChoBmgJaA9DCCbEXFI1aXFAlIaUUpRoFU0lAWgWR0Cd52NoJzDGdX2UKGgGaAloD0MI6bga2RVibkCUhpRSlGgVS/poFkdAnef5h4MWoHV9lChoBmgJaA9DCM5wAz4/DG1AlIaUUpRoFUvpaBZHQJ3856IFeOZ1fZQoaAZoCWgPQwjYDdsWZatyQJSGlFKUaBVNEgFoFkdAnf0bR8c+7nV9lChoBmgJaA9DCO0rD9ITLHBAlIaUUpRoFU0AAWgWR0Cd/mtG/etTdX2UKGgGaAloD0MIcnDpmLPvckCUhpRSlGgVTRQBaBZHQJ3+q3UhFE11fZQoaAZoCWgPQwgn2H+dG71yQJSGlFKUaBVL9GgWR0Cd/3t0V8CxdX2UKGgGaAloD0MIE9bG2ElfckCUhpRSlGgVS/BoFkdAngAKDGtITXV9lChoBmgJaA9DCEAYeO59tXBAlIaUUpRoFU0GAWgWR0CeAEC6H0sfdX2UKGgGaAloD0MI/id/9w44b0CUhpRSlGgVS99oFkdAngBwfuCwr3V9lChoBmgJaA9DCLhAguLHmW9AlIaUUpRoFUvoaBZHQJ4AbgOz6ad1fZQoaAZoCWgPQwgniSXlbu9wQJSGlFKUaBVNQQFoFkdAngCAWnCO3nV9lChoBmgJaA9DCEz8UdQZxWxAlIaUUpRoFU0DAWgWR0CeAU2SMcZMdX2UKGgGaAloD0MI4lrtYa/lckCUhpRSlGgVS/loFkdAngFnTd+G5HV9lChoBmgJaA9DCH6P+uvV7nFAlIaUUpRoFU0hAWgWR0CeAWPeHi3odX2UKGgGaAloD0MIpU5AE+EPcUCUhpRSlGgVS99oFkdAngH2qo60Y3V9lChoBmgJaA9DCDM0nghiOHFAlIaUUpRoFU0TAWgWR0CeApwd8zAOdX2UKGgGaAloD0MIjZyFPW1NcUCUhpRSlGgVTRoBaBZHQJ4DFiWmgrZ1fZQoaAZoCWgPQwjtn6cBgw9xQJSGlFKUaBVL8GgWR0CeA0EAHVwxdX2UKGgGaAloD0MIZCDPLt9/bUCUhpRSlGgVTR0BaBZHQJ4EF14gRsd1fZQoaAZoCWgPQwh/944aE3VyQJSGlFKUaBVL6GgWR0CeBEA44p+ddX2UKGgGaAloD0MIzeUGQ50HckCUhpRSlGgVS+poFkdAngR225QP7XV9lChoBmgJaA9DCJENpIvNGnBAlIaUUpRoFUv9aBZHQJ4FtzzVc2R1fZQoaAZoCWgPQwi+g584AENvQJSGlFKUaBVL5WgWR0CeBcogmqo7dX2UKGgGaAloD0MIz2vsEtWSU0CUhpRSlGgVS6NoFkdAngX39R77bnV9lChoBmgJaA9DCPHXZI36925AlIaUUpRoFUv3aBZHQJ4GElOXVsl1fZQoaAZoCWgPQwiaXfdW5EhwQJSGlFKUaBVL8GgWR0CeBkAS39aVdX2UKGgGaAloD0MIxuBh2neGcUCUhpRSlGgVTQwBaBZHQJ4G9HJ9y951fZQoaAZoCWgPQwjp0VRPZvlyQJSGlFKUaBVNEAFoFkdAngcclHBk7XV9lChoBmgJaA9DCDLmriVkRXJAlIaUUpRoFU0KAWgWR0CeB/Q2uPmxdX2UKGgGaAloD0MIFCaMZmVwckCUhpRSlGgVTRkBaBZHQJ4IX2bobGZ1fZQoaAZoCWgPQwhyNbIrLSVwQJSGlFKUaBVNHwFoFkdAnghxAGB4EHV9lChoBmgJaA9DCMSVs3dG625AlIaUUpRoFU0QAWgWR0CeCiSZ0CA+dX2UKGgGaAloD0MIi+HqAIimckCUhpRSlGgVS/5oFkdAngqqvaDf33V9lChoBmgJaA9DCNycSgaATW5AlIaUUpRoFUvuaBZHQJ4MTnIQvpR1fZQoaAZoCWgPQwjs3orEhIZvQJSGlFKUaBVL4GgWR0CeDEvSMLncdX2UKGgGaAloD0MIA5SGGoVec0CUhpRSlGgVTS8BaBZHQJ4MeuX/o7p1fZQoaAZoCWgPQwhKRPgXAXRyQJSGlFKUaBVL7mgWR0CeDJjebd8BdX2UKGgGaAloD0MIJm2q7hH4cECUhpRSlGgVTWgBaBZHQJ4MrEsJ6Y51fZQoaAZoCWgPQwi62LRSiPZwQJSGlFKUaBVL7mgWR0CeDOGsV+I/dX2UKGgGaAloD0MI7wOQ2oRLcUCUhpRSlGgVTTkBaBZHQJ4NAddVvMt1fZQoaAZoCWgPQwgGZoUinSNyQJSGlFKUaBVL2GgWR0CeDQwMH8jzdX2UKGgGaAloD0MI+nyUEZeWcUCUhpRSlGgVS9poFkdAng09ugpSaXV9lChoBmgJaA9DCKLvbmWJYHJAlIaUUpRoFU0hAWgWR0CeDann+yZ8dX2UKGgGaAloD0MIXi13ZgKLcUCUhpRSlGgVS95oFkdAng4TCgsbvXV9lChoBmgJaA9DCH2SO2wi33FAlIaUUpRoFUvkaBZHQJ4Oi28Zk091fZQoaAZoCWgPQwiH/gkulk9xQJSGlFKUaBVNGAFoFkdAng/q6z3RHHV9lChoBmgJaA9DCFLvqZw2a3JAlIaUUpRoFUvnaBZHQJ4QTpC8e0Z1fZQoaAZoCWgPQwgUJSGRNh1vQJSGlFKUaBVNEwFoFkdAnhJivX9R8HV9lChoBmgJaA9DCH3PSISGgHFAlIaUUpRoFUvHaBZHQJ4S317IDHR1fZQoaAZoCWgPQwgdxw+Vhp1xQJSGlFKUaBVL/GgWR0CeFHDdP+GXdX2UKGgGaAloD0MI1LmilFCHcECUhpRSlGgVTRYBaBZHQJ4Vqe18b711fZQoaAZoCWgPQwjc8/xp451yQJSGlFKUaBVNGgFoFkdAnhWr2pQ1rXV9lChoBmgJaA9DCBOAf0oVP25AlIaUUpRoFUvuaBZHQJ4V68PFvQ51fZQoaAZoCWgPQwjdsdgmVVlxQJSGlFKUaBVNJAFoFkdAnhX5/CqIanV9lChoBmgJaA9DCLwft1/+n3BAlIaUUpRoFU0YAWgWR0CeFpHZK3/hdX2UKGgGaAloD0MIKZSFr2/BcUCUhpRSlGgVS+toFkdAnhaoqTbFj3V9lChoBmgJaA9DCPw2xHjN6HBAlIaUUpRoFU0cAWgWR0CeFs3BYV7AdX2UKGgGaAloD0MIEB/Y8Z+zcECUhpRSlGgVTUYBaBZHQJ4XbAaef7J1fZQoaAZoCWgPQwiVRWEXReZwQJSGlFKUaBVNCwFoFkdAnhi1aB7NS3V9lChoBmgJaA9DCJgW9UlukG9AlIaUUpRoFU0NAWgWR0CeGxm0mdAgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58e146aefbcf4564de7aa4fad3ade1100a0cad3ec834d4cb2a41733e29d44e72
3
+ size 147361
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1eb6561550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1eb65615e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1eb6561670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1eb6561700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1eb6561790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1eb6561820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1eb65618b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1eb6561940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1eb65619d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1eb6561a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1eb6561af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1eb6561b80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f1eb64e8fc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1679849150744171084,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZR0D3DuQ+68x7ntl4X3rD98s+5JpEJNgAAAAAAAIA/RkcWPlfXgj6u58a+caXGvkHek71cq0u9AAAAAAAAAAAafCW96CjYPgh6crzyeKy+29G1u9CmhrsAAAAAAAAAADMPQL3cLx4+gGAfPssNTb57Agg9VemVOwAAAAAAAAAAAEwtvaT0Pzq01AW82tXSPGZa37tHfLm9AACAPwAAgD/NKha8VLtcPtrhBj1P+Y6+NQNevV0qlDwAAAAAAAAAAI2dQT5M2Ls+KP6ivhqbwb7mtmw87+WKvQAAAAAAAAAApjqivSkIXbqJ/hc5QgEBNOdY1jr8ETK4AAAAAAAAgD8z63I93DI4vAPbmLv0y5Q8BVWkPUpwdL0AAIA/AACAP80917zS8fi7Ci6EO2mQljx8hU29Tdt7PQAAgD8AAIA/ZpbROw8sJj6+wEu936CivkcnXr3nhsM8AAAAAAAAAACAkOG9cTHrPTd7KT5iyxq+lzmDvR4pPj0AAAAAAAAAAJqbIrz01XQ+CoPbvSRviL7bQou99nwLuwAAAAAAAAAAZpCcPA55tD8l83g+bQSxvUJNizx/fSI+AAAAAAAAAADgsmk+USLrPtL/Nb7gQOy+8RuLPfqiKb0AAAAAAAAAADNV1ry5iFE/Wkn8vHFZA7/V1Vs9xlH6vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISUc5mE2Cb0CUhpRSlIwBbJRL/owBdJRHQJ3RXiYLLIR1fZQoaAZoCWgPQwgAyAkThndyQJSGlFKUaBVNHAFoFkdAndF8uJ1q33V9lChoBmgJaA9DCIoCfSLPxHFAlIaUUpRoFUvSaBZHQJ3Ry3Td+G51fZQoaAZoCWgPQwhd4sgDkTNIQJSGlFKUaBVN6ANoFkdAndHieyzHCHV9lChoBmgJaA9DCHUBLzPsOXBAlIaUUpRoFUvOaBZHQJ3SAoAn2Ix1fZQoaAZoCWgPQwi0OjlDcXtyQJSGlFKUaBVNUAFoFkdAndInVf/m1nV9lChoBmgJaA9DCAu2EU92W3FAlIaUUpRoFUvraBZHQJ3TbYkE9uB1fZQoaAZoCWgPQwiAK9mxUQFwQJSGlFKUaBVNIgFoFkdAndSEY8+zMXV9lChoBmgJaA9DCFq6gm1EQnFAlIaUUpRoFU0YAWgWR0Cd1NXXAdn1dX2UKGgGaAloD0MI0H8PXrt1b0CUhpRSlGgVS+toFkdAndT9ZNfw7XV9lChoBmgJaA9DCLzLRXwnM3BAlIaUUpRoFU1GAWgWR0Cd1YHUtqYadX2UKGgGaAloD0MIW3nJ/2TBckCUhpRSlGgVS/ZoFkdAndXjAvcrRXV9lChoBmgJaA9DCPSHZp7cS3FAlIaUUpRoFUvzaBZHQJ3WtFCswL51fZQoaAZoCWgPQwjiH7b06JRwQJSGlFKUaBVL82gWR0Cd1yWAPNFCdX2UKGgGaAloD0MIb7iP3BqlcUCUhpRSlGgVS9JoFkdAnddH18LKFXV9lChoBmgJaA9DCKc7Tzwn6XJAlIaUUpRoFU0EAWgWR0Cd2LQpnYg8dX2UKGgGaAloD0MIJXmu70M7c0CUhpRSlGgVS/9oFkdAndoe5SWJJ3V9lChoBmgJaA9DCEyln3D2+HJAlIaUUpRoFU1yAWgWR0Cd2h6zVtoBdX2UKGgGaAloD0MIz0vFxnzFckCUhpRSlGgVTScBaBZHQJ3anphWo3t1fZQoaAZoCWgPQwhs6GZ/oENyQJSGlFKUaBVNHAFoFkdAndsDIikftHV9lChoBmgJaA9DCL9DUaDPDXRAlIaUUpRoFUvtaBZHQJ3bm+/QBxR1fZQoaAZoCWgPQwgbf6KyIR5wQJSGlFKUaBVNNgFoFkdAndu1Cw8nu3V9lChoBmgJaA9DCPMbJhokOXNAlIaUUpRoFU1HAWgWR0Cd3GrCFbmmdX2UKGgGaAloD0MInWUWodg6cECUhpRSlGgVS/BoFkdAnd0UEHMUy3V9lChoBmgJaA9DCMJrlzYcjW1AlIaUUpRoFUvgaBZHQJ3dqpPykKx1fZQoaAZoCWgPQwh6qkNuhtpxQJSGlFKUaBVNAAFoFkdAnd4HoTwlSnV9lChoBmgJaA9DCB8RUyLJPnBAlIaUUpRoFUvTaBZHQJ3fPo0Q9Rt1fZQoaAZoCWgPQwhpUZ/kjg9zQJSGlFKUaBVNFAFoFkdAneBVPi1iOXV9lChoBmgJaA9DCIaSyakd0XBAlIaUUpRoFU1AAWgWR0Cd4OGNJe3QdX2UKGgGaAloD0MI+7DeqJW0ckCUhpRSlGgVS/9oFkdAneFLLpzLfXV9lChoBmgJaA9DCKErEag+mHFAlIaUUpRoFU0EAWgWR0Cd4wxKQJXydX2UKGgGaAloD0MIGJgVinTtbECUhpRSlGgVS+toFkdAneNpBHCoCXV9lChoBmgJaA9DCOV/8nfvKHJAlIaUUpRoFUvuaBZHQJ3kF+az/qB1fZQoaAZoCWgPQwjnN0w0iHpyQJSGlFKUaBVNUwFoFkdAneRdeMQ2/HV9lChoBmgJaA9DCG3Jqgh3iXJAlIaUUpRoFUv5aBZHQJ3k/4Kx9oh1fZQoaAZoCWgPQwhxrIvbKFRxQJSGlFKUaBVL8GgWR0Cd5WbD/EOzdX2UKGgGaAloD0MIRdREn0/fcUCUhpRSlGgVTRsBaBZHQJ3lgNG3F1l1fZQoaAZoCWgPQwgouFhRA6ZuQJSGlFKUaBVL7GgWR0Cd5goybhFWdX2UKGgGaAloD0MIQzhm2ZPXcUCUhpRSlGgVS/BoFkdAnebu45Lh73V9lChoBmgJaA9DCCbEXFI1aXFAlIaUUpRoFU0lAWgWR0Cd52NoJzDGdX2UKGgGaAloD0MI6bga2RVibkCUhpRSlGgVS/poFkdAnef5h4MWoHV9lChoBmgJaA9DCM5wAz4/DG1AlIaUUpRoFUvpaBZHQJ3856IFeOZ1fZQoaAZoCWgPQwjYDdsWZatyQJSGlFKUaBVNEgFoFkdAnf0bR8c+7nV9lChoBmgJaA9DCO0rD9ITLHBAlIaUUpRoFU0AAWgWR0Cd/mtG/etTdX2UKGgGaAloD0MIcnDpmLPvckCUhpRSlGgVTRQBaBZHQJ3+q3UhFE11fZQoaAZoCWgPQwgn2H+dG71yQJSGlFKUaBVL9GgWR0Cd/3t0V8CxdX2UKGgGaAloD0MIE9bG2ElfckCUhpRSlGgVS/BoFkdAngAKDGtITXV9lChoBmgJaA9DCEAYeO59tXBAlIaUUpRoFU0GAWgWR0CeAEC6H0sfdX2UKGgGaAloD0MI/id/9w44b0CUhpRSlGgVS99oFkdAngBwfuCwr3V9lChoBmgJaA9DCLhAguLHmW9AlIaUUpRoFUvoaBZHQJ4AbgOz6ad1fZQoaAZoCWgPQwgniSXlbu9wQJSGlFKUaBVNQQFoFkdAngCAWnCO3nV9lChoBmgJaA9DCEz8UdQZxWxAlIaUUpRoFU0DAWgWR0CeAU2SMcZMdX2UKGgGaAloD0MI4lrtYa/lckCUhpRSlGgVS/loFkdAngFnTd+G5HV9lChoBmgJaA9DCH6P+uvV7nFAlIaUUpRoFU0hAWgWR0CeAWPeHi3odX2UKGgGaAloD0MIpU5AE+EPcUCUhpRSlGgVS99oFkdAngH2qo60Y3V9lChoBmgJaA9DCDM0nghiOHFAlIaUUpRoFU0TAWgWR0CeApwd8zAOdX2UKGgGaAloD0MIjZyFPW1NcUCUhpRSlGgVTRoBaBZHQJ4DFiWmgrZ1fZQoaAZoCWgPQwjtn6cBgw9xQJSGlFKUaBVL8GgWR0CeA0EAHVwxdX2UKGgGaAloD0MIZCDPLt9/bUCUhpRSlGgVTR0BaBZHQJ4EF14gRsd1fZQoaAZoCWgPQwh/944aE3VyQJSGlFKUaBVL6GgWR0CeBEA44p+ddX2UKGgGaAloD0MIzeUGQ50HckCUhpRSlGgVS+poFkdAngR225QP7XV9lChoBmgJaA9DCJENpIvNGnBAlIaUUpRoFUv9aBZHQJ4FtzzVc2R1fZQoaAZoCWgPQwi+g584AENvQJSGlFKUaBVL5WgWR0CeBcogmqo7dX2UKGgGaAloD0MIz2vsEtWSU0CUhpRSlGgVS6NoFkdAngX39R77bnV9lChoBmgJaA9DCPHXZI36925AlIaUUpRoFUv3aBZHQJ4GElOXVsl1fZQoaAZoCWgPQwiaXfdW5EhwQJSGlFKUaBVL8GgWR0CeBkAS39aVdX2UKGgGaAloD0MIxuBh2neGcUCUhpRSlGgVTQwBaBZHQJ4G9HJ9y951fZQoaAZoCWgPQwjp0VRPZvlyQJSGlFKUaBVNEAFoFkdAngcclHBk7XV9lChoBmgJaA9DCDLmriVkRXJAlIaUUpRoFU0KAWgWR0CeB/Q2uPmxdX2UKGgGaAloD0MIFCaMZmVwckCUhpRSlGgVTRkBaBZHQJ4IX2bobGZ1fZQoaAZoCWgPQwhyNbIrLSVwQJSGlFKUaBVNHwFoFkdAnghxAGB4EHV9lChoBmgJaA9DCMSVs3dG625AlIaUUpRoFU0QAWgWR0CeCiSZ0CA+dX2UKGgGaAloD0MIi+HqAIimckCUhpRSlGgVS/5oFkdAngqqvaDf33V9lChoBmgJaA9DCNycSgaATW5AlIaUUpRoFUvuaBZHQJ4MTnIQvpR1fZQoaAZoCWgPQwjs3orEhIZvQJSGlFKUaBVL4GgWR0CeDEvSMLncdX2UKGgGaAloD0MIA5SGGoVec0CUhpRSlGgVTS8BaBZHQJ4MeuX/o7p1fZQoaAZoCWgPQwhKRPgXAXRyQJSGlFKUaBVL7mgWR0CeDJjebd8BdX2UKGgGaAloD0MIJm2q7hH4cECUhpRSlGgVTWgBaBZHQJ4MrEsJ6Y51fZQoaAZoCWgPQwi62LRSiPZwQJSGlFKUaBVL7mgWR0CeDOGsV+I/dX2UKGgGaAloD0MI7wOQ2oRLcUCUhpRSlGgVTTkBaBZHQJ4NAddVvMt1fZQoaAZoCWgPQwgGZoUinSNyQJSGlFKUaBVL2GgWR0CeDQwMH8jzdX2UKGgGaAloD0MI+nyUEZeWcUCUhpRSlGgVS9poFkdAng09ugpSaXV9lChoBmgJaA9DCKLvbmWJYHJAlIaUUpRoFU0hAWgWR0CeDann+yZ8dX2UKGgGaAloD0MIXi13ZgKLcUCUhpRSlGgVS95oFkdAng4TCgsbvXV9lChoBmgJaA9DCH2SO2wi33FAlIaUUpRoFUvkaBZHQJ4Oi28Zk091fZQoaAZoCWgPQwiH/gkulk9xQJSGlFKUaBVNGAFoFkdAng/q6z3RHHV9lChoBmgJaA9DCFLvqZw2a3JAlIaUUpRoFUvnaBZHQJ4QTpC8e0Z1fZQoaAZoCWgPQwgUJSGRNh1vQJSGlFKUaBVNEwFoFkdAnhJivX9R8HV9lChoBmgJaA9DCH3PSISGgHFAlIaUUpRoFUvHaBZHQJ4S317IDHR1fZQoaAZoCWgPQwgdxw+Vhp1xQJSGlFKUaBVL/GgWR0CeFHDdP+GXdX2UKGgGaAloD0MI1LmilFCHcECUhpRSlGgVTRYBaBZHQJ4Vqe18b711fZQoaAZoCWgPQwjc8/xp451yQJSGlFKUaBVNGgFoFkdAnhWr2pQ1rXV9lChoBmgJaA9DCBOAf0oVP25AlIaUUpRoFUvuaBZHQJ4V68PFvQ51fZQoaAZoCWgPQwjdsdgmVVlxQJSGlFKUaBVNJAFoFkdAnhX5/CqIanV9lChoBmgJaA9DCLwft1/+n3BAlIaUUpRoFU0YAWgWR0CeFpHZK3/hdX2UKGgGaAloD0MIKZSFr2/BcUCUhpRSlGgVS+toFkdAnhaoqTbFj3V9lChoBmgJaA9DCPw2xHjN6HBAlIaUUpRoFU0cAWgWR0CeFs3BYV7AdX2UKGgGaAloD0MIEB/Y8Z+zcECUhpRSlGgVTUYBaBZHQJ4XbAaef7J1fZQoaAZoCWgPQwiVRWEXReZwQJSGlFKUaBVNCwFoFkdAnhi1aB7NS3V9lChoBmgJaA9DCJgW9UlukG9AlIaUUpRoFU0NAWgWR0CeGxm0mdAgdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:189efd9b52ce86ca65c43433e70b2320c43fd2bdddaa72715db4537b3b5b2af1
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29fbf70b3e5a3a8d05b25a119f9b0461583efcaf79ad978d8f005a7321127028
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (221 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.04780777752114, "std_reward": 15.118873942652115, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-26T17:16:04.121146"}