PEFT
TensorBoard
sql
spider
text-to-sql
sql fine-tune
LoRA
QLoRa
adapter
richardr1126 commited on
Commit
317ecff
1 Parent(s): 2098a3d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -13
README.md CHANGED
@@ -1,20 +1,72 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: peft
 
3
  ---
4
- ## Training procedure
5
 
 
 
 
6
 
7
- The following `bitsandbytes` quantization config was used during training:
8
- - load_in_8bit: False
9
- - load_in_4bit: True
10
- - llm_int8_threshold: 6.0
11
- - llm_int8_skip_modules: None
12
- - llm_int8_enable_fp32_cpu_offload: False
13
- - llm_int8_has_fp16_weight: False
14
- - bnb_4bit_quant_type: nf4
15
- - bnb_4bit_use_double_quant: False
16
- - bnb_4bit_compute_dtype: float16
17
- ### Framework versions
18
 
 
19
 
20
- - PEFT 0.4.0.dev0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - sql
4
+ - spider
5
+ - text-to-sql
6
+ - sql fine-tune
7
+ - LoRA
8
+ - QLoRa
9
+ - adapter
10
+ datasets:
11
+ - spider
12
+ - richardr1126/spider-natsql-skeleton-context-finetune
13
  library_name: peft
14
+ license: bigcode-openrail-m
15
  ---
16
+ ### QLoRa Spider NatSQL Wizard Coder Adapter Summary
17
 
18
+ - This QLoRa adapter was created by finetuning [WizardLM/WizardCoder-15B-V1.0](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0) on a NatSQL enhanced Spider context training dataset: [richardr1126/spider-natsql-skeleton-context-finetune](https://huggingface.co/datasets/richardr1126/spider-natsql-skeleton-context-finetune).
19
+ - Finetuning was performed using QLoRa on a single RTX6000 48GB.
20
+ - If you want just the merged model it is her [here](https://huggingface.co/richardr1126/spider-natsql-wizard-coder-merged).
21
 
22
+ ## Citation
 
 
 
 
 
 
 
 
 
 
23
 
24
+ Please cite the repo if you use the data or code in this repo.
25
 
26
+ ```
27
+ @misc{luo2023wizardcoder,
28
+ title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
29
+ author={Ziyang Luo and Can Xu and Pu Zhao and Qingfeng Sun and Xiubo Geng and Wenxiang Hu and Chongyang Tao and Jing Ma and Qingwei Lin and Daxin Jiang},
30
+ year={2023},
31
+ }
32
+ ```
33
+ ```
34
+ @article{yu2018spider,
35
+ title={Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task},
36
+ author={Yu, Tao and Zhang, Rui and Yang, Kai and Yasunaga, Michihiro and Wang, Dongxu and Li, Zifan and Ma, James and Li, Irene and Yao, Qingning and Roman, Shanelle and others},
37
+ journal={arXiv preprint arXiv:1809.08887},
38
+ year={2018}
39
+ }
40
+ ```
41
+ ```
42
+ @inproceedings{gan-etal-2021-natural-sql,
43
+ title = "Natural {SQL}: Making {SQL} Easier to Infer from Natural Language Specifications",
44
+ author = "Gan, Yujian and
45
+ Chen, Xinyun and
46
+ Xie, Jinxia and
47
+ Purver, Matthew and
48
+ Woodward, John R. and
49
+ Drake, John and
50
+ Zhang, Qiaofu",
51
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
52
+ month = nov,
53
+ year = "2021",
54
+ address = "Punta Cana, Dominican Republic",
55
+ publisher = "Association for Computational Linguistics",
56
+ url = "https://aclanthology.org/2021.findings-emnlp.174",
57
+ doi = "10.18653/v1/2021.findings-emnlp.174",
58
+ pages = "2030--2042",
59
+ }
60
+ ```
61
+ ```
62
+ @article{dettmers2023qlora,
63
+ title={QLoRA: Efficient Finetuning of Quantized LLMs},
64
+ author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke},
65
+ journal={arXiv preprint arXiv:2305.14314},
66
+ year={2023}
67
+ }
68
+ ```
69
+
70
+ ## Disclaimer
71
+
72
+ The resources, including code, data, and model weights, associated with this project are restricted for academic research purposes only and cannot be used for commercial purposes. The content produced by any version of WizardCoder is influenced by uncontrollable variables such as randomness, and therefore, the accuracy of the output cannot be guaranteed by this project. This project does not accept any legal liability for the content of the model output, nor does it assume responsibility for any losses incurred due to the use of associated resources and output results.