Add files from e3
Browse files- all_results.json +1 -0
- config.json +28 -0
- configuration_stablelm_alpha.py +113 -0
- generation_config.json +6 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +203 -0
- modeling_stablelm_alpha.py +656 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer_config.json +212 -0
all_results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[{"train_loss": 0.000934600830078125, "epoch": 2, "step": 3072, "lr": 4.750621824247943e-06}, {"train_loss": 0.032470703125, "epoch": 2, "step": 3200, "lr": 4.0073511784396335e-06}, {"train_loss": 0.00045013427734375, "epoch": 2, "step": 3328, "lr": 3.312524130702509e-06}, {"train_loss": 0.000514984130859375, "epoch": 2, "step": 3456, "lr": 2.6717575498422943e-06}, {"train_loss": 0.0002899169921875, "epoch": 2, "step": 3584, "lr": 2.0902312886461217e-06}, {"train_loss": 0.0005035400390625, "epoch": 2, "step": 3712, "lr": 1.572646310795336e-06}, {"train_loss": 0.0027618408203125, "epoch": 2, "step": 3840, "lr": 1.12318668903995e-06}, {"train_loss": 0.0003719329833984375, "epoch": 2, "step": 3968, "lr": 7.45485781835279e-07}, {"train_loss": 0.000881195068359375, "epoch": 2, "step": 4096, "lr": 4.425968618633292e-07}, {"train_loss": 0.00103759765625, "epoch": 2, "step": 4224, "lr": 2.1696843387321142e-07}, {"train_loss": 0.0005950927734375, "epoch": 2, "step": 4352, "lr": 7.04244413671129e-08}, {"train_loss": 0.00075531005859375, "epoch": 2, "step": 4480, "lr": 4.149522137787409e-09}]
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/fast/rolmedo/models/stablelm-base-alpha-3b-v2/",
|
3 |
+
"architectures": [
|
4 |
+
"StableLMAlphaForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_stablelm_alpha.StableLMAlphaConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_stablelm_alpha.StableLMAlphaForCausalLM"
|
9 |
+
},
|
10 |
+
"bos_token_id": 0,
|
11 |
+
"eos_token_id": 0,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 2560,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"max_position_embeddings": 4096,
|
16 |
+
"model_type": "stablelm_alpha",
|
17 |
+
"norm_eps": 1e-05,
|
18 |
+
"num_heads": 32,
|
19 |
+
"num_hidden_layers": 32,
|
20 |
+
"rotary_emb_base": 10000,
|
21 |
+
"rotary_pct": 0.25,
|
22 |
+
"rotary_scaling_factor": 1.0,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.40.0.dev0",
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 50432
|
28 |
+
}
|
configuration_stablelm_alpha.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" StableLM β model configuration"""
|
16 |
+
|
17 |
+
from transformers import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
STABLE_LM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
24 |
+
|
25 |
+
|
26 |
+
class StableLMAlphaConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
29 |
+
documentation from [`PretrainedConfig`] for more information.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
vocab_size (`int`, *optional*, defaults to 50432):
|
33 |
+
Vocabulary size of the StableLM model. Defines the number of different tokens that
|
34 |
+
can be represented by the `inputs_ids` passed when calling [`StableLMAlphaModel`].
|
35 |
+
hidden_size (`int`, *optional*, defaults to 6144):
|
36 |
+
Dimension of the decoder layers and the pooler layer.
|
37 |
+
num_hidden_layers (`int`, *optional*, defaults to 44):
|
38 |
+
Number of hidden layers in the Transformer decoder.
|
39 |
+
num_heads (`int`, *optional*, defaults to 64):
|
40 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
41 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
42 |
+
The non-linear activation function (function or string).
|
43 |
+
rotary_pct (`float`, *optional*, defaults to 0.25):
|
44 |
+
Percentage of hidden dimensions to allocate to rotary embeddings.
|
45 |
+
rotary_emb_base (`int`, *optional*, defaults to 10000)
|
46 |
+
Base for computing rotary embeddings frequency.
|
47 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
48 |
+
The maximum sequence length that this model might ever be used with.
|
49 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
50 |
+
initializer_range (`float`, *optional*, defaults to 1e-5):
|
51 |
+
The standard deviation of the truncated_normal_initializer for initializing
|
52 |
+
all weight matrices.
|
53 |
+
norm_eps (`float`, *optional*, defaults to 1e-5):
|
54 |
+
The epsilon used by the normalization layers.
|
55 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
56 |
+
Whether or not the model should return the last key/values attentions
|
57 |
+
(not used by all models). Only relevant if `config.is_decoder=True`.
|
58 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
59 |
+
Whether to tie weight embeddings
|
60 |
+
|
61 |
+
Example:
|
62 |
+
|
63 |
+
```python
|
64 |
+
>>> from transformers import StableLMAlphaConfig, StableLMAlphaModel
|
65 |
+
|
66 |
+
>>> # Initializing a StableLMAlphaConfig style configuration
|
67 |
+
>>> configuration = StableLMAlphaConfig()
|
68 |
+
|
69 |
+
>>> # Initializing a model (with random weights) from the style configuration
|
70 |
+
>>> model = StableLMAlphaModel(configuration) # doctest: +SKIP
|
71 |
+
|
72 |
+
>>> # Accessing the model configuration
|
73 |
+
>>> configuration = model.config # doctest: +SKIP
|
74 |
+
```"""
|
75 |
+
model_type = "stablelm_alpha"
|
76 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
77 |
+
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
vocab_size=50_432,
|
81 |
+
hidden_size=2_560,
|
82 |
+
num_hidden_layers=32,
|
83 |
+
num_heads=32,
|
84 |
+
hidden_act="silu",
|
85 |
+
rotary_pct=0.25,
|
86 |
+
rotary_emb_base=10_000,
|
87 |
+
max_position_embeddings=2_048,
|
88 |
+
initializer_range=0.02,
|
89 |
+
norm_eps=1e-5,
|
90 |
+
use_cache=True,
|
91 |
+
bos_token_id=0,
|
92 |
+
eos_token_id=2,
|
93 |
+
tie_word_embeddings=False,
|
94 |
+
**kwargs,
|
95 |
+
):
|
96 |
+
self.vocab_size = vocab_size
|
97 |
+
self.max_position_embeddings = max_position_embeddings
|
98 |
+
self.hidden_size = hidden_size
|
99 |
+
self.num_hidden_layers = num_hidden_layers
|
100 |
+
self.num_heads = num_heads
|
101 |
+
self.hidden_act = hidden_act
|
102 |
+
self.rotary_pct = rotary_pct
|
103 |
+
self.rotary_emb_base = rotary_emb_base
|
104 |
+
self.initializer_range = initializer_range
|
105 |
+
self.norm_eps = norm_eps
|
106 |
+
self.use_cache = use_cache
|
107 |
+
self.tie_word_embeddings = tie_word_embeddings
|
108 |
+
super().__init__(
|
109 |
+
bos_token_id=bos_token_id,
|
110 |
+
eos_token_id=eos_token_id,
|
111 |
+
tie_word_embeddings=tie_word_embeddings,
|
112 |
+
**kwargs,
|
113 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 0,
|
5 |
+
"transformers_version": "4.40.0.dev0"
|
6 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1502ca8c94386c96d7f0b96832dac5192e87e684087e8917ab9d079d4c8252b
|
3 |
+
size 4981064288
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04c62df62023becad6539665d4f6477307941283a91eccdc4504a798dc00e11a
|
3 |
+
size 610828072
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 5591869440
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"transformer.embed.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"transformer.final_norm.bias": "model-00002-of-00002.safetensors",
|
9 |
+
"transformer.final_norm.weight": "model-00002-of-00002.safetensors",
|
10 |
+
"transformer.layers.0.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"transformer.layers.0.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"transformer.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"transformer.layers.0.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"transformer.layers.0.norm.bias": "model-00001-of-00002.safetensors",
|
15 |
+
"transformer.layers.0.norm.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"transformer.layers.1.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"transformer.layers.1.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"transformer.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"transformer.layers.1.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"transformer.layers.1.norm.bias": "model-00001-of-00002.safetensors",
|
21 |
+
"transformer.layers.1.norm.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"transformer.layers.10.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"transformer.layers.10.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"transformer.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"transformer.layers.10.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"transformer.layers.10.norm.bias": "model-00001-of-00002.safetensors",
|
27 |
+
"transformer.layers.10.norm.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"transformer.layers.11.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"transformer.layers.11.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"transformer.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"transformer.layers.11.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"transformer.layers.11.norm.bias": "model-00001-of-00002.safetensors",
|
33 |
+
"transformer.layers.11.norm.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"transformer.layers.12.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"transformer.layers.12.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"transformer.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"transformer.layers.12.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"transformer.layers.12.norm.bias": "model-00001-of-00002.safetensors",
|
39 |
+
"transformer.layers.12.norm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"transformer.layers.13.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"transformer.layers.13.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"transformer.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"transformer.layers.13.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"transformer.layers.13.norm.bias": "model-00001-of-00002.safetensors",
|
45 |
+
"transformer.layers.13.norm.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"transformer.layers.14.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"transformer.layers.14.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"transformer.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"transformer.layers.14.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"transformer.layers.14.norm.bias": "model-00001-of-00002.safetensors",
|
51 |
+
"transformer.layers.14.norm.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"transformer.layers.15.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"transformer.layers.15.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"transformer.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"transformer.layers.15.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"transformer.layers.15.norm.bias": "model-00001-of-00002.safetensors",
|
57 |
+
"transformer.layers.15.norm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"transformer.layers.16.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"transformer.layers.16.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"transformer.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"transformer.layers.16.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"transformer.layers.16.norm.bias": "model-00001-of-00002.safetensors",
|
63 |
+
"transformer.layers.16.norm.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"transformer.layers.17.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"transformer.layers.17.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"transformer.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"transformer.layers.17.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"transformer.layers.17.norm.bias": "model-00001-of-00002.safetensors",
|
69 |
+
"transformer.layers.17.norm.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"transformer.layers.18.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"transformer.layers.18.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"transformer.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"transformer.layers.18.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"transformer.layers.18.norm.bias": "model-00001-of-00002.safetensors",
|
75 |
+
"transformer.layers.18.norm.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"transformer.layers.19.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"transformer.layers.19.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"transformer.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"transformer.layers.19.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"transformer.layers.19.norm.bias": "model-00001-of-00002.safetensors",
|
81 |
+
"transformer.layers.19.norm.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"transformer.layers.2.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"transformer.layers.2.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"transformer.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"transformer.layers.2.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"transformer.layers.2.norm.bias": "model-00001-of-00002.safetensors",
|
87 |
+
"transformer.layers.2.norm.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"transformer.layers.20.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"transformer.layers.20.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"transformer.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"transformer.layers.20.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"transformer.layers.20.norm.bias": "model-00001-of-00002.safetensors",
|
93 |
+
"transformer.layers.20.norm.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"transformer.layers.21.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"transformer.layers.21.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"transformer.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"transformer.layers.21.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"transformer.layers.21.norm.bias": "model-00001-of-00002.safetensors",
|
99 |
+
"transformer.layers.21.norm.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"transformer.layers.22.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"transformer.layers.22.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"transformer.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"transformer.layers.22.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"transformer.layers.22.norm.bias": "model-00001-of-00002.safetensors",
|
105 |
+
"transformer.layers.22.norm.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"transformer.layers.23.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"transformer.layers.23.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"transformer.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"transformer.layers.23.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"transformer.layers.23.norm.bias": "model-00001-of-00002.safetensors",
|
111 |
+
"transformer.layers.23.norm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"transformer.layers.24.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"transformer.layers.24.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"transformer.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"transformer.layers.24.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"transformer.layers.24.norm.bias": "model-00001-of-00002.safetensors",
|
117 |
+
"transformer.layers.24.norm.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"transformer.layers.25.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"transformer.layers.25.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"transformer.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"transformer.layers.25.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"transformer.layers.25.norm.bias": "model-00001-of-00002.safetensors",
|
123 |
+
"transformer.layers.25.norm.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"transformer.layers.26.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"transformer.layers.26.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"transformer.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"transformer.layers.26.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"transformer.layers.26.norm.bias": "model-00001-of-00002.safetensors",
|
129 |
+
"transformer.layers.26.norm.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"transformer.layers.27.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"transformer.layers.27.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"transformer.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"transformer.layers.27.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"transformer.layers.27.norm.bias": "model-00001-of-00002.safetensors",
|
135 |
+
"transformer.layers.27.norm.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"transformer.layers.28.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"transformer.layers.28.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"transformer.layers.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"transformer.layers.28.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"transformer.layers.28.norm.bias": "model-00001-of-00002.safetensors",
|
141 |
+
"transformer.layers.28.norm.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"transformer.layers.29.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"transformer.layers.29.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"transformer.layers.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"transformer.layers.29.mlp.out_proj.weight": "model-00002-of-00002.safetensors",
|
146 |
+
"transformer.layers.29.norm.bias": "model-00001-of-00002.safetensors",
|
147 |
+
"transformer.layers.29.norm.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"transformer.layers.3.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"transformer.layers.3.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"transformer.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"transformer.layers.3.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"transformer.layers.3.norm.bias": "model-00001-of-00002.safetensors",
|
153 |
+
"transformer.layers.3.norm.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"transformer.layers.30.attention.out_proj.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"transformer.layers.30.attention.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
156 |
+
"transformer.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
157 |
+
"transformer.layers.30.mlp.out_proj.weight": "model-00002-of-00002.safetensors",
|
158 |
+
"transformer.layers.30.norm.bias": "model-00002-of-00002.safetensors",
|
159 |
+
"transformer.layers.30.norm.weight": "model-00002-of-00002.safetensors",
|
160 |
+
"transformer.layers.31.attention.out_proj.weight": "model-00002-of-00002.safetensors",
|
161 |
+
"transformer.layers.31.attention.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
162 |
+
"transformer.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
163 |
+
"transformer.layers.31.mlp.out_proj.weight": "model-00002-of-00002.safetensors",
|
164 |
+
"transformer.layers.31.norm.bias": "model-00002-of-00002.safetensors",
|
165 |
+
"transformer.layers.31.norm.weight": "model-00002-of-00002.safetensors",
|
166 |
+
"transformer.layers.4.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"transformer.layers.4.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"transformer.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"transformer.layers.4.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"transformer.layers.4.norm.bias": "model-00001-of-00002.safetensors",
|
171 |
+
"transformer.layers.4.norm.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"transformer.layers.5.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"transformer.layers.5.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"transformer.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"transformer.layers.5.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"transformer.layers.5.norm.bias": "model-00001-of-00002.safetensors",
|
177 |
+
"transformer.layers.5.norm.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"transformer.layers.6.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"transformer.layers.6.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"transformer.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"transformer.layers.6.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"transformer.layers.6.norm.bias": "model-00001-of-00002.safetensors",
|
183 |
+
"transformer.layers.6.norm.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"transformer.layers.7.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"transformer.layers.7.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"transformer.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"transformer.layers.7.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"transformer.layers.7.norm.bias": "model-00001-of-00002.safetensors",
|
189 |
+
"transformer.layers.7.norm.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"transformer.layers.8.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"transformer.layers.8.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"transformer.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"transformer.layers.8.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"transformer.layers.8.norm.bias": "model-00001-of-00002.safetensors",
|
195 |
+
"transformer.layers.8.norm.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"transformer.layers.9.attention.out_proj.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"transformer.layers.9.attention.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"transformer.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"transformer.layers.9.mlp.out_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"transformer.layers.9.norm.bias": "model-00001-of-00002.safetensors",
|
201 |
+
"transformer.layers.9.norm.weight": "model-00001-of-00002.safetensors"
|
202 |
+
}
|
203 |
+
}
|
modeling_stablelm_alpha.py
ADDED
@@ -0,0 +1,656 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
# This code is based off the following work:
|
17 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
18 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py
|
19 |
+
""" PyTorch StableLM-Alpha model. """
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
import math
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import CrossEntropyLoss
|
27 |
+
from transformers.modeling_outputs import (
|
28 |
+
BaseModelOutputWithPast,
|
29 |
+
CausalLMOutputWithPast,
|
30 |
+
)
|
31 |
+
from transformers.modeling_utils import PreTrainedModel
|
32 |
+
from transformers.utils import logging
|
33 |
+
|
34 |
+
from .configuration_stablelm_alpha import StableLMAlphaConfig
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
41 |
+
"""Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`."""
|
42 |
+
batch_size, src_len = mask.size()
|
43 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
44 |
+
|
45 |
+
expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype)
|
46 |
+
inverted_mask = 1.0 - expanded_mask
|
47 |
+
|
48 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
49 |
+
|
50 |
+
|
51 |
+
class LayerNorm(nn.LayerNorm):
|
52 |
+
def __init__(self, normalized_shape: torch.Size, bias: bool = True, **kwargs):
|
53 |
+
r"""
|
54 |
+
bias (`bool`, default = True): whether to use the bias term.
|
55 |
+
"""
|
56 |
+
super().__init__(normalized_shape, **kwargs)
|
57 |
+
if not bias:
|
58 |
+
self.bias = None
|
59 |
+
|
60 |
+
|
61 |
+
class DecoderLayer(nn.Module):
|
62 |
+
def __init__(self, config: StableLMAlphaConfig):
|
63 |
+
super().__init__()
|
64 |
+
|
65 |
+
self.norm = LayerNorm(config.hidden_size, eps=config.norm_eps)
|
66 |
+
self.attention = Attention(config)
|
67 |
+
self.mlp = MLP(config)
|
68 |
+
|
69 |
+
def forward(
|
70 |
+
self,
|
71 |
+
hidden_states: Optional[torch.FloatTensor],
|
72 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
73 |
+
position_ids: Optional[torch.LongTensor] = None,
|
74 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
75 |
+
output_attentions: Optional[bool] = False,
|
76 |
+
use_cache: Optional[bool] = False,
|
77 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
78 |
+
residual = hidden_states
|
79 |
+
|
80 |
+
# Pre-Norm
|
81 |
+
hidden_states = self.norm(hidden_states)
|
82 |
+
|
83 |
+
# Self-Attention
|
84 |
+
attn_output, attn_weights, present_key_value = self.attention(
|
85 |
+
hidden_states=hidden_states,
|
86 |
+
attention_mask=attention_mask,
|
87 |
+
position_ids=position_ids,
|
88 |
+
past_key_value=past_key_value,
|
89 |
+
use_cache=use_cache,
|
90 |
+
output_attentions=output_attentions,
|
91 |
+
)
|
92 |
+
|
93 |
+
# Feed-forward
|
94 |
+
mlp_output = self.mlp(hidden_states)
|
95 |
+
|
96 |
+
hidden_states = residual + attn_output + mlp_output
|
97 |
+
|
98 |
+
outputs = (hidden_states,)
|
99 |
+
if output_attentions:
|
100 |
+
outputs += (attn_weights,)
|
101 |
+
if use_cache:
|
102 |
+
outputs += (present_key_value,)
|
103 |
+
return outputs # hidden_states, (optional: attn_weights), (optional: present_key_value)
|
104 |
+
|
105 |
+
|
106 |
+
class MLP(nn.Module):
|
107 |
+
def __init__(self, config: StableLMAlphaConfig):
|
108 |
+
super().__init__()
|
109 |
+
|
110 |
+
hidden_size = config.hidden_size
|
111 |
+
multiple_of = 256
|
112 |
+
ff_dim = int(8 * hidden_size / 3)
|
113 |
+
intermediate_size = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
|
114 |
+
|
115 |
+
self.gate_proj = nn.Linear(hidden_size, 2 * intermediate_size, bias=False)
|
116 |
+
self.out_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
117 |
+
self.act = nn.SiLU()
|
118 |
+
|
119 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
120 |
+
ff, ff_gate = self.gate_proj(x).chunk(2, dim=-1)
|
121 |
+
return self.out_proj(ff * self.act(ff_gate))
|
122 |
+
|
123 |
+
|
124 |
+
class RotaryEmbedding(nn.Module):
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
dim: int,
|
128 |
+
max_position_embeddings: int,
|
129 |
+
base: int = 10_000,
|
130 |
+
device: Optional[torch.device] = None,
|
131 |
+
):
|
132 |
+
super().__init__()
|
133 |
+
|
134 |
+
self.dim = dim
|
135 |
+
self.max_position_embeddings = max_position_embeddings
|
136 |
+
self.base = base
|
137 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
138 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
139 |
+
|
140 |
+
# Build here to make `torch.jit.trace` work.
|
141 |
+
self._set_cos_sin_cache(
|
142 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
143 |
+
)
|
144 |
+
|
145 |
+
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
146 |
+
self.max_seq_len_cached = seq_len
|
147 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
148 |
+
freqs = torch.outer(t, self.inv_freq)
|
149 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
150 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
151 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
152 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
153 |
+
|
154 |
+
def forward(self, x: torch.Tensor, seq_len: Optional[int] = None):
|
155 |
+
# x: [batch_size, num_heads, seq_len, head_size]
|
156 |
+
if seq_len > self.max_seq_len_cached:
|
157 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype())
|
158 |
+
return (
|
159 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
160 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
+
def rotate_half(x: torch.Tensor):
|
165 |
+
"""Rotates half the hidden dims of the input."""
|
166 |
+
x1, x2 = torch.chunk(x, 2, dim=-1)
|
167 |
+
return torch.cat((-x2, x1), dim=-1)
|
168 |
+
|
169 |
+
|
170 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
171 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
172 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
173 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
174 |
+
cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
|
175 |
+
sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
|
176 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
177 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
178 |
+
return q_embed, k_embed
|
179 |
+
|
180 |
+
|
181 |
+
class Attention(nn.Module):
|
182 |
+
def __init__(self, config: StableLMAlphaConfig):
|
183 |
+
super().__init__()
|
184 |
+
|
185 |
+
self.config = config
|
186 |
+
self.hidden_size = config.hidden_size
|
187 |
+
self.num_heads = config.num_heads
|
188 |
+
self.head_dim = self.hidden_size // self.num_heads
|
189 |
+
self.max_position_embeddings = config.max_position_embeddings
|
190 |
+
if self.hidden_size % self.num_heads != 0:
|
191 |
+
raise ValueError(
|
192 |
+
"`hidden_size` is not divisble by the number of attention heads! Make sure to update them"
|
193 |
+
)
|
194 |
+
|
195 |
+
self.qkv_proj = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
196 |
+
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
197 |
+
self._init_rope()
|
198 |
+
|
199 |
+
def _init_rope(self):
|
200 |
+
self.rotary_ndims = int(self.head_dim * self.config.rotary_pct)
|
201 |
+
self.rotary_emb = RotaryEmbedding(
|
202 |
+
self.rotary_ndims,
|
203 |
+
max_position_embeddings=self.config.max_position_embeddings,
|
204 |
+
base=self.config.rotary_emb_base,
|
205 |
+
)
|
206 |
+
|
207 |
+
def forward(
|
208 |
+
self,
|
209 |
+
hidden_states: torch.FloatTensor,
|
210 |
+
attention_mask: torch.FloatTensor,
|
211 |
+
position_ids: torch.LongTensor,
|
212 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
213 |
+
output_attentions: Optional[bool] = False,
|
214 |
+
use_cache: Optional[bool] = False,
|
215 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
216 |
+
has_past_key_value = past_key_value is not None
|
217 |
+
|
218 |
+
# Compute QKV
|
219 |
+
# [batch_size, seq_len, (num_heads * 3 * head_dim)]
|
220 |
+
qkv = self.qkv_proj(hidden_states)
|
221 |
+
|
222 |
+
# [batch_size, seq_len, num_heads, 3 * head_dim]
|
223 |
+
new_qkv_shape = qkv.size()[:-1] + (self.num_heads, 3 * self.head_dim)
|
224 |
+
qkv = qkv.view(*new_qkv_shape)
|
225 |
+
|
226 |
+
# 3 * [batch_size, num_heads, seq_len, head_dim]
|
227 |
+
query = qkv[..., : self.head_dim].permute(0, 2, 1, 3)
|
228 |
+
key = qkv[..., self.head_dim:(2 * self.head_dim)].permute(0, 2, 1, 3)
|
229 |
+
value = qkv[..., (2 * self.head_dim):].permute(0, 2, 1, 3)
|
230 |
+
|
231 |
+
# Compute rotary embeddings on rotary_ndims
|
232 |
+
# [batch_size, num_heads, seq_len, rotary_ndims]
|
233 |
+
query_rot = query[..., :self.rotary_ndims]
|
234 |
+
query_pass = query[..., self.rotary_ndims:]
|
235 |
+
key_rot = key[..., :self.rotary_ndims]
|
236 |
+
key_pass = key[..., self.rotary_ndims:]
|
237 |
+
|
238 |
+
# Compute token offset for rotary embeddings (when decoding)
|
239 |
+
kv_seq_len = key.shape[-2]
|
240 |
+
if has_past_key_value:
|
241 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
242 |
+
|
243 |
+
# Add rotary embeddings to query and key
|
244 |
+
cos, sin = self.rotary_emb(value, seq_len=kv_seq_len)
|
245 |
+
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
246 |
+
|
247 |
+
# Concatenate rotary embeddings with pass-through query and key
|
248 |
+
# [batch_size, num_heads, seq_len, head_dim]
|
249 |
+
query = torch.cat((query, query_pass), dim=-1)
|
250 |
+
key = torch.cat((key, key_pass), dim=-1)
|
251 |
+
|
252 |
+
# Reuse past key-value states
|
253 |
+
if has_past_key_value:
|
254 |
+
key = torch.cat((past_key_value[0], key), dim=2)
|
255 |
+
value = torch.cat((past_key_value[1], value), dim=2)
|
256 |
+
present_key_value = (key, value) if use_cache else None
|
257 |
+
|
258 |
+
# [batch_size, num_heads, seq_len, head_dim]
|
259 |
+
query = query.transpose(1, 2).contiguous()
|
260 |
+
key = key.transpose(1, 2).contiguous()
|
261 |
+
value = value.transpose(1, 2).contiguous()
|
262 |
+
|
263 |
+
# Compute attention
|
264 |
+
softmax_scale = 1 / math.sqrt(self.head_dim)
|
265 |
+
attn_scores = torch.einsum('bthd,bshd->bhts', query, key * softmax_scale)
|
266 |
+
# Apply the attention mask
|
267 |
+
if attention_mask is not None:
|
268 |
+
attn_scores = attn_scores + attention_mask
|
269 |
+
attn_weights = nn.functional.softmax(attn_scores, dim=-1, dtype=torch.float32).to(query.dtype)
|
270 |
+
attn_output = torch.einsum('bhts,bshd->bthd', attn_weights, value)
|
271 |
+
|
272 |
+
# Merge heads
|
273 |
+
attn_output = attn_output.reshape(attn_output.shape[0], attn_output.shape[1], -1)
|
274 |
+
|
275 |
+
# Final linear projection
|
276 |
+
attn_output = self.out_proj(attn_output)
|
277 |
+
|
278 |
+
if not output_attentions:
|
279 |
+
attn_weights = None
|
280 |
+
|
281 |
+
return attn_output, attn_weights, present_key_value
|
282 |
+
|
283 |
+
|
284 |
+
def attention_mask_func(attention_scores: torch.Tensor, ltor_mask: torch.Tensor):
|
285 |
+
attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min)
|
286 |
+
return attention_scores
|
287 |
+
|
288 |
+
|
289 |
+
class StableLMAlphaPreTrainedModel(PreTrainedModel):
|
290 |
+
"""An abstract class to handle weights initialization and a simple interface
|
291 |
+
for downloading and loading pretrained models.
|
292 |
+
"""
|
293 |
+
|
294 |
+
config_class = StableLMAlphaConfig
|
295 |
+
base_model_prefix = "transformer"
|
296 |
+
supports_gradient_checkpointing = True
|
297 |
+
_no_split_modules = ["DecoderLayer"]
|
298 |
+
_skip_keys_device_placement = "past_key_values"
|
299 |
+
|
300 |
+
def _init_weights(self, module: nn.Module):
|
301 |
+
"""Initialize the weights"""
|
302 |
+
if isinstance(module, nn.Linear):
|
303 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
304 |
+
if module.bias is not None:
|
305 |
+
module.bias.data.zero_()
|
306 |
+
elif isinstance(module, nn.Embedding):
|
307 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
308 |
+
if module.padding_idx is not None:
|
309 |
+
module.weight.data[module.padding_idx].zero_()
|
310 |
+
elif isinstance(module, nn.LayerNorm):
|
311 |
+
module.bias.data.zero_()
|
312 |
+
module.weight.data.fill_(1.0)
|
313 |
+
|
314 |
+
def _set_gradient_checkpointing(self, module: nn.Module, value=False):
|
315 |
+
if isinstance(module, StableLMAlphaModel):
|
316 |
+
module.gradient_checkpointing = value
|
317 |
+
|
318 |
+
|
319 |
+
def _make_causal_mask(
|
320 |
+
input_ids_shape: torch.Size,
|
321 |
+
dtype: torch.dtype,
|
322 |
+
device: torch.device,
|
323 |
+
past_key_values_length: int = 0
|
324 |
+
):
|
325 |
+
"""Make causal mask used for bi-directional self-attention."""
|
326 |
+
batch_size, tgt_len = input_ids_shape
|
327 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device)
|
328 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
329 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
330 |
+
mask = mask.to(dtype)
|
331 |
+
if past_key_values_length > 0:
|
332 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
333 |
+
return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length)
|
334 |
+
|
335 |
+
|
336 |
+
class StableLMAlphaModel(StableLMAlphaPreTrainedModel):
|
337 |
+
def __init__(self, config: StableLMAlphaConfig):
|
338 |
+
super().__init__(config)
|
339 |
+
self.config = config
|
340 |
+
|
341 |
+
self.embed = nn.Embedding(config.vocab_size, config.hidden_size)
|
342 |
+
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
343 |
+
self.final_norm = LayerNorm(config.hidden_size, eps=config.norm_eps)
|
344 |
+
|
345 |
+
self.gradient_checkpointing = False
|
346 |
+
self.post_init()
|
347 |
+
|
348 |
+
def get_input_embeddings(self):
|
349 |
+
return self.embed
|
350 |
+
|
351 |
+
def set_input_embeddings(self, value: nn.Module):
|
352 |
+
self.embed = value
|
353 |
+
|
354 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
355 |
+
def _prepare_decoder_attention_mask(
|
356 |
+
self,
|
357 |
+
attention_mask: torch.Tensor,
|
358 |
+
input_shape: torch.Size,
|
359 |
+
inputs_embeds: torch.Tensor,
|
360 |
+
past_key_values_length: int,
|
361 |
+
):
|
362 |
+
# Create causal mask
|
363 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
364 |
+
combined_attention_mask = None
|
365 |
+
if input_shape[-1] > 1:
|
366 |
+
combined_attention_mask = _make_causal_mask(
|
367 |
+
input_shape,
|
368 |
+
inputs_embeds.dtype,
|
369 |
+
device=inputs_embeds.device,
|
370 |
+
past_key_values_length=past_key_values_length,
|
371 |
+
)
|
372 |
+
|
373 |
+
if attention_mask is not None:
|
374 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
375 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
376 |
+
inputs_embeds.device
|
377 |
+
)
|
378 |
+
combined_attention_mask = (
|
379 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
380 |
+
)
|
381 |
+
|
382 |
+
return combined_attention_mask
|
383 |
+
|
384 |
+
def forward(
|
385 |
+
self,
|
386 |
+
input_ids: Optional[torch.LongTensor] = None,
|
387 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
388 |
+
position_ids: Optional[torch.LongTensor] = None,
|
389 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
390 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
391 |
+
use_cache: Optional[bool] = None,
|
392 |
+
output_attentions: Optional[bool] = None,
|
393 |
+
output_hidden_states: Optional[bool] = None,
|
394 |
+
return_dict: Optional[bool] = None,
|
395 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
396 |
+
r"""
|
397 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers`
|
398 |
+
with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
399 |
+
Contains precomputed key and value hidden states of the attention blocks.
|
400 |
+
Can be used to speed up decoding. If `past_key_values` are used, the user
|
401 |
+
can optionally input only the last `decoder_input_ids` (those that don't
|
402 |
+
have their past key value states given to this model) of shape `(batch_size, 1)`
|
403 |
+
instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
404 |
+
use_cache (`bool`, *optional*):
|
405 |
+
If set to `True`, `past_key_values` key value states are returned and
|
406 |
+
can be used to speed up decoding (see `past_key_values`).
|
407 |
+
"""
|
408 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
409 |
+
output_hidden_states = (
|
410 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
411 |
+
)
|
412 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
413 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
414 |
+
|
415 |
+
if input_ids is not None and inputs_embeds is not None:
|
416 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
417 |
+
elif input_ids is not None:
|
418 |
+
input_shape = input_ids.size()
|
419 |
+
elif inputs_embeds is not None:
|
420 |
+
input_shape = inputs_embeds.size()[:-1]
|
421 |
+
else:
|
422 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
423 |
+
|
424 |
+
batch_size, seq_length = input_shape
|
425 |
+
|
426 |
+
if past_key_values is None:
|
427 |
+
past_key_values_length = 0
|
428 |
+
past_key_values = tuple([None] * self.config.num_hidden_layers)
|
429 |
+
seq_length_with_past = seq_length
|
430 |
+
else:
|
431 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
432 |
+
seq_length_with_past = seq_length + past_key_values_length
|
433 |
+
|
434 |
+
if position_ids is None:
|
435 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
436 |
+
position_ids = torch.arange(past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device)
|
437 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
438 |
+
else:
|
439 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
440 |
+
|
441 |
+
if inputs_embeds is None:
|
442 |
+
inputs_embeds = self.embed(input_ids)
|
443 |
+
|
444 |
+
# Attention mask.
|
445 |
+
if attention_mask is None:
|
446 |
+
attention_mask = torch.ones(
|
447 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
448 |
+
)
|
449 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
450 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
451 |
+
)
|
452 |
+
|
453 |
+
hidden_states = inputs_embeds
|
454 |
+
|
455 |
+
if self.gradient_checkpointing and self.training:
|
456 |
+
if use_cache:
|
457 |
+
logger.warning(
|
458 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
459 |
+
)
|
460 |
+
use_cache = False
|
461 |
+
|
462 |
+
all_hidden_states = () if output_hidden_states else None
|
463 |
+
all_attentions = () if output_attentions else None
|
464 |
+
present_key_values = () if use_cache else None
|
465 |
+
|
466 |
+
for _, (decoder_layer, past_key_value) in enumerate(zip(self.layers, past_key_values)):
|
467 |
+
if output_hidden_states:
|
468 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
469 |
+
|
470 |
+
if self.gradient_checkpointing and self.training:
|
471 |
+
|
472 |
+
def create_custom_forward(module):
|
473 |
+
def custom_forward(*inputs):
|
474 |
+
# `None` for `use_cache`
|
475 |
+
return module(*inputs, output_attentions, None)
|
476 |
+
|
477 |
+
return custom_forward
|
478 |
+
|
479 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
480 |
+
create_custom_forward(decoder_layer),
|
481 |
+
hidden_states,
|
482 |
+
attention_mask,
|
483 |
+
position_ids,
|
484 |
+
# `None` for `past_key_value`
|
485 |
+
None,
|
486 |
+
)
|
487 |
+
else:
|
488 |
+
outputs = decoder_layer(
|
489 |
+
hidden_states,
|
490 |
+
attention_mask=attention_mask,
|
491 |
+
position_ids=position_ids,
|
492 |
+
past_key_value=past_key_value,
|
493 |
+
output_attentions=output_attentions,
|
494 |
+
use_cache=use_cache,
|
495 |
+
)
|
496 |
+
|
497 |
+
hidden_states = outputs[0]
|
498 |
+
|
499 |
+
if output_attentions:
|
500 |
+
all_attentions = all_attentions + (outputs[1],)
|
501 |
+
|
502 |
+
if use_cache:
|
503 |
+
present_key_values += (outputs[2 if output_attentions else 1],)
|
504 |
+
|
505 |
+
hidden_states = self.final_norm(hidden_states)
|
506 |
+
|
507 |
+
# Add last hidden state
|
508 |
+
if output_hidden_states:
|
509 |
+
all_hidden_states += (hidden_states,)
|
510 |
+
|
511 |
+
present_key_values = present_key_values if use_cache else None
|
512 |
+
if not return_dict:
|
513 |
+
return tuple(v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None)
|
514 |
+
|
515 |
+
return BaseModelOutputWithPast(
|
516 |
+
last_hidden_state=hidden_states,
|
517 |
+
past_key_values=present_key_values,
|
518 |
+
hidden_states=all_hidden_states,
|
519 |
+
attentions=all_attentions,
|
520 |
+
)
|
521 |
+
|
522 |
+
|
523 |
+
class StableLMAlphaForCausalLM(StableLMAlphaPreTrainedModel):
|
524 |
+
_tied_weights_keys = ["lm_head.weight"]
|
525 |
+
|
526 |
+
def __init__(self, config: StableLMAlphaConfig):
|
527 |
+
super().__init__(config)
|
528 |
+
|
529 |
+
self.transformer = StableLMAlphaModel(config)
|
530 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
531 |
+
|
532 |
+
self.post_init()
|
533 |
+
|
534 |
+
def get_output_embeddings(self):
|
535 |
+
return self.lm_head
|
536 |
+
|
537 |
+
def set_output_embeddings(self, new_embeddings: nn.Module):
|
538 |
+
self.lm_head = new_embeddings
|
539 |
+
|
540 |
+
def forward(
|
541 |
+
self,
|
542 |
+
input_ids: Optional[torch.LongTensor] = None,
|
543 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
544 |
+
position_ids: Optional[torch.LongTensor] = None,
|
545 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
546 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
547 |
+
labels: Optional[torch.LongTensor] = None,
|
548 |
+
use_cache: Optional[bool] = None,
|
549 |
+
output_attentions: Optional[bool] = None,
|
550 |
+
output_hidden_states: Optional[bool] = None,
|
551 |
+
return_dict: Optional[bool] = None,
|
552 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
553 |
+
r"""
|
554 |
+
Example:
|
555 |
+
|
556 |
+
```python
|
557 |
+
>>> from transformers import AutoTokenizer, StableLMAlphaForCausalLM, StableLMAlphaConfig
|
558 |
+
>>> import torch
|
559 |
+
|
560 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-base-alpha-3b-v2", trust_remote_code=True)
|
561 |
+
>>> config = StableLMAlphaConfig.from_pretrained("stabilityai/stablelm-base-alpha-3b-v2")
|
562 |
+
>>> config.is_decoder = True
|
563 |
+
>>> model = StableLMAlphaForCausalLM.from_pretrained("stabilityai/stablelm-base-alpha-3b-v2", config=config)
|
564 |
+
|
565 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
566 |
+
>>> outputs = model(**inputs)
|
567 |
+
|
568 |
+
>>> logits = outputs.logits
|
569 |
+
```
|
570 |
+
"""
|
571 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
572 |
+
|
573 |
+
outputs = self.transformer(
|
574 |
+
input_ids,
|
575 |
+
attention_mask=attention_mask,
|
576 |
+
position_ids=position_ids,
|
577 |
+
inputs_embeds=inputs_embeds,
|
578 |
+
past_key_values=past_key_values,
|
579 |
+
use_cache=use_cache,
|
580 |
+
output_attentions=output_attentions,
|
581 |
+
output_hidden_states=output_hidden_states,
|
582 |
+
return_dict=return_dict,
|
583 |
+
)
|
584 |
+
|
585 |
+
hidden_states = outputs[0]
|
586 |
+
logits = self.lm_head(hidden_states)
|
587 |
+
|
588 |
+
lm_loss = None
|
589 |
+
if labels is not None:
|
590 |
+
# move labels to correct device to enable model parallelism
|
591 |
+
labels = labels.to(logits.device)
|
592 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
593 |
+
shift_logits = logits[:, :-1, :].contiguous()
|
594 |
+
labels = labels[:, 1:].contiguous()
|
595 |
+
loss_fct = CrossEntropyLoss()
|
596 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
|
597 |
+
|
598 |
+
if not return_dict:
|
599 |
+
output = (logits,) + outputs[1:]
|
600 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
601 |
+
|
602 |
+
return CausalLMOutputWithPast(
|
603 |
+
loss=lm_loss,
|
604 |
+
logits=logits,
|
605 |
+
past_key_values=outputs.past_key_values,
|
606 |
+
hidden_states=outputs.hidden_states,
|
607 |
+
attentions=outputs.attentions,
|
608 |
+
)
|
609 |
+
|
610 |
+
def prepare_inputs_for_generation(
|
611 |
+
self,
|
612 |
+
input_ids,
|
613 |
+
past_key_values: Optional[torch.Tensor] = None,
|
614 |
+
attention_mask: Optional[torch.Tensor] = None,
|
615 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
616 |
+
**kwargs
|
617 |
+
):
|
618 |
+
# Cut decoder_input_ids if past is used
|
619 |
+
if past_key_values and past_key_values[0] is not None:
|
620 |
+
input_ids = input_ids[:, -1:]
|
621 |
+
|
622 |
+
position_ids = kwargs.get("position_ids", None)
|
623 |
+
if attention_mask is not None and position_ids is None:
|
624 |
+
# Create position_ids on the fly for batch generation
|
625 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
626 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
627 |
+
if past_key_values:
|
628 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
629 |
+
|
630 |
+
# If `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
631 |
+
if inputs_embeds is not None and past_key_values is None:
|
632 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
633 |
+
else:
|
634 |
+
model_inputs = {"input_ids": input_ids}
|
635 |
+
|
636 |
+
model_inputs.update(
|
637 |
+
{
|
638 |
+
"attention_mask": attention_mask,
|
639 |
+
"past_key_values": past_key_values,
|
640 |
+
"position_ids": position_ids,
|
641 |
+
}
|
642 |
+
)
|
643 |
+
|
644 |
+
return model_inputs
|
645 |
+
|
646 |
+
def _reorder_cache(self, past_key_values: torch.Tensor, beam_idx: int):
|
647 |
+
reordered_past = ()
|
648 |
+
for past_key_value in past_key_values:
|
649 |
+
reordered_past += (
|
650 |
+
tuple(past_state.index_select(0, beam_idx) for past_state in past_key_value[:2]) + past_key_value[2:],
|
651 |
+
)
|
652 |
+
return reordered_past
|
653 |
+
|
654 |
+
|
655 |
+
StableLMAlphaConfig.register_for_auto_class()
|
656 |
+
StableLMAlphaForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<|padding|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"50254": {
|
21 |
+
"content": " ",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": false
|
27 |
+
},
|
28 |
+
"50255": {
|
29 |
+
"content": " ",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": false
|
35 |
+
},
|
36 |
+
"50256": {
|
37 |
+
"content": " ",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": false
|
43 |
+
},
|
44 |
+
"50257": {
|
45 |
+
"content": " ",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": false
|
51 |
+
},
|
52 |
+
"50258": {
|
53 |
+
"content": " ",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": true,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": false
|
59 |
+
},
|
60 |
+
"50259": {
|
61 |
+
"content": " ",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": true,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": false
|
67 |
+
},
|
68 |
+
"50260": {
|
69 |
+
"content": " ",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": true,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": false
|
75 |
+
},
|
76 |
+
"50261": {
|
77 |
+
"content": " ",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": true,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": false
|
83 |
+
},
|
84 |
+
"50262": {
|
85 |
+
"content": " ",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": true,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": false
|
91 |
+
},
|
92 |
+
"50263": {
|
93 |
+
"content": " ",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": true,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": false
|
99 |
+
},
|
100 |
+
"50264": {
|
101 |
+
"content": " ",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": true,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": false
|
107 |
+
},
|
108 |
+
"50265": {
|
109 |
+
"content": " ",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": true,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": false
|
115 |
+
},
|
116 |
+
"50266": {
|
117 |
+
"content": " ",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": true,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": false
|
123 |
+
},
|
124 |
+
"50267": {
|
125 |
+
"content": " ",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": true,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": false
|
131 |
+
},
|
132 |
+
"50268": {
|
133 |
+
"content": " ",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": true,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": false
|
139 |
+
},
|
140 |
+
"50269": {
|
141 |
+
"content": " ",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": true,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": false
|
147 |
+
},
|
148 |
+
"50270": {
|
149 |
+
"content": " ",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": true,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": false
|
155 |
+
},
|
156 |
+
"50271": {
|
157 |
+
"content": " ",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": true,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": false
|
163 |
+
},
|
164 |
+
"50272": {
|
165 |
+
"content": " ",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": true,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": false
|
171 |
+
},
|
172 |
+
"50273": {
|
173 |
+
"content": " ",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": true,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": false
|
179 |
+
},
|
180 |
+
"50274": {
|
181 |
+
"content": " ",
|
182 |
+
"lstrip": false,
|
183 |
+
"normalized": true,
|
184 |
+
"rstrip": false,
|
185 |
+
"single_word": false,
|
186 |
+
"special": false
|
187 |
+
},
|
188 |
+
"50275": {
|
189 |
+
"content": " ",
|
190 |
+
"lstrip": false,
|
191 |
+
"normalized": true,
|
192 |
+
"rstrip": false,
|
193 |
+
"single_word": false,
|
194 |
+
"special": false
|
195 |
+
},
|
196 |
+
"50276": {
|
197 |
+
"content": " ",
|
198 |
+
"lstrip": false,
|
199 |
+
"normalized": true,
|
200 |
+
"rstrip": false,
|
201 |
+
"single_word": false,
|
202 |
+
"special": false
|
203 |
+
}
|
204 |
+
},
|
205 |
+
"bos_token": "<|endoftext|>",
|
206 |
+
"clean_up_tokenization_spaces": true,
|
207 |
+
"eos_token": "<|endoftext|>",
|
208 |
+
"model_max_length": 1000000000000000019884624838656,
|
209 |
+
"pad_token": "<|endoftext|>",
|
210 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
211 |
+
"unk_token": "<|endoftext|>"
|
212 |
+
}
|