riccorl commited on
Commit
62cb141
1 Parent(s): 1d3cd01

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "--NME--": 250102,
3
+ "[E-0]": 250103,
4
+ "[E-10]": 250113,
5
+ "[E-11]": 250114,
6
+ "[E-12]": 250115,
7
+ "[E-13]": 250116,
8
+ "[E-14]": 250117,
9
+ "[E-15]": 250118,
10
+ "[E-16]": 250119,
11
+ "[E-17]": 250120,
12
+ "[E-18]": 250121,
13
+ "[E-19]": 250122,
14
+ "[E-1]": 250104,
15
+ "[E-20]": 250123,
16
+ "[E-21]": 250124,
17
+ "[E-22]": 250125,
18
+ "[E-23]": 250126,
19
+ "[E-24]": 250127,
20
+ "[E-25]": 250128,
21
+ "[E-26]": 250129,
22
+ "[E-27]": 250130,
23
+ "[E-28]": 250131,
24
+ "[E-29]": 250132,
25
+ "[E-2]": 250105,
26
+ "[E-30]": 250133,
27
+ "[E-31]": 250134,
28
+ "[E-32]": 250135,
29
+ "[E-33]": 250136,
30
+ "[E-34]": 250137,
31
+ "[E-35]": 250138,
32
+ "[E-36]": 250139,
33
+ "[E-37]": 250140,
34
+ "[E-38]": 250141,
35
+ "[E-39]": 250142,
36
+ "[E-3]": 250106,
37
+ "[E-40]": 250143,
38
+ "[E-41]": 250144,
39
+ "[E-42]": 250145,
40
+ "[E-43]": 250146,
41
+ "[E-44]": 250147,
42
+ "[E-45]": 250148,
43
+ "[E-46]": 250149,
44
+ "[E-47]": 250150,
45
+ "[E-48]": 250151,
46
+ "[E-49]": 250152,
47
+ "[E-4]": 250107,
48
+ "[E-50]": 250153,
49
+ "[E-51]": 250154,
50
+ "[E-52]": 250155,
51
+ "[E-53]": 250156,
52
+ "[E-54]": 250157,
53
+ "[E-55]": 250158,
54
+ "[E-56]": 250159,
55
+ "[E-57]": 250160,
56
+ "[E-58]": 250161,
57
+ "[E-59]": 250162,
58
+ "[E-5]": 250108,
59
+ "[E-60]": 250163,
60
+ "[E-61]": 250164,
61
+ "[E-62]": 250165,
62
+ "[E-63]": 250166,
63
+ "[E-64]": 250167,
64
+ "[E-65]": 250168,
65
+ "[E-66]": 250169,
66
+ "[E-67]": 250170,
67
+ "[E-68]": 250171,
68
+ "[E-69]": 250172,
69
+ "[E-6]": 250109,
70
+ "[E-70]": 250173,
71
+ "[E-71]": 250174,
72
+ "[E-72]": 250175,
73
+ "[E-73]": 250176,
74
+ "[E-74]": 250177,
75
+ "[E-75]": 250178,
76
+ "[E-76]": 250179,
77
+ "[E-77]": 250180,
78
+ "[E-78]": 250181,
79
+ "[E-79]": 250182,
80
+ "[E-7]": 250110,
81
+ "[E-80]": 250183,
82
+ "[E-81]": 250184,
83
+ "[E-82]": 250185,
84
+ "[E-83]": 250186,
85
+ "[E-84]": 250187,
86
+ "[E-85]": 250188,
87
+ "[E-86]": 250189,
88
+ "[E-87]": 250190,
89
+ "[E-88]": 250191,
90
+ "[E-89]": 250192,
91
+ "[E-8]": 250111,
92
+ "[E-90]": 250193,
93
+ "[E-91]": 250194,
94
+ "[E-92]": 250195,
95
+ "[E-93]": 250196,
96
+ "[E-94]": 250197,
97
+ "[E-95]": 250198,
98
+ "[E-96]": 250199,
99
+ "[E-97]": 250200,
100
+ "[E-98]": 250201,
101
+ "[E-99]": 250202,
102
+ "[E-9]": 250112,
103
+ "[MASK]": 250101
104
+ }
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation": "gelu",
3
+ "add_entity_embedding": null,
4
+ "additional_special_symbols": 101,
5
+ "additional_special_symbols_types": 0,
6
+ "architectures": [
7
+ "RelikReaderSpanModel"
8
+ ],
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_relik.RelikReaderConfig",
11
+ "AutoModel": "modeling_relik.RelikReaderSpanModel"
12
+ },
13
+ "binary_end_logits": false,
14
+ "default_reader_class": null,
15
+ "entity_type_loss": false,
16
+ "linears_hidden_size": 512,
17
+ "model_type": "relik-reader",
18
+ "num_layers": null,
19
+ "threshold": 0.5,
20
+ "torch_dtype": "float32",
21
+ "training": true,
22
+ "transformer_model": "/leonardo_work/IscrC_MEL/hf_cache/microsoft/mdeberta-v3-base",
23
+ "transformers_version": "4.41.2",
24
+ "use_last_k_layers": 1
25
+ }
configuration_relik.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+
3
+ from transformers import AutoConfig
4
+ from transformers.configuration_utils import PretrainedConfig
5
+
6
+
7
+ class RelikReaderConfig(PretrainedConfig):
8
+ model_type = "relik-reader"
9
+
10
+ def __init__(
11
+ self,
12
+ transformer_model: str = "microsoft/deberta-v3-base",
13
+ additional_special_symbols: int = 101,
14
+ additional_special_symbols_types: Optional[int] = 0,
15
+ num_layers: Optional[int] = None,
16
+ activation: str = "gelu",
17
+ linears_hidden_size: Optional[int] = 512,
18
+ use_last_k_layers: int = 1,
19
+ entity_type_loss: bool = False,
20
+ add_entity_embedding: bool = None,
21
+ binary_end_logits: bool = False,
22
+ training: bool = False,
23
+ default_reader_class: Optional[str] = None,
24
+ threshold: Optional[float] = 0.5,
25
+ **kwargs
26
+ ) -> None:
27
+ # TODO: add name_or_path to kwargs
28
+ self.transformer_model = transformer_model
29
+ self.additional_special_symbols = additional_special_symbols
30
+ self.additional_special_symbols_types = additional_special_symbols_types
31
+ self.num_layers = num_layers
32
+ self.activation = activation
33
+ self.linears_hidden_size = linears_hidden_size
34
+ self.use_last_k_layers = use_last_k_layers
35
+ self.entity_type_loss = entity_type_loss
36
+ self.add_entity_embedding = (
37
+ True
38
+ if add_entity_embedding is None and entity_type_loss
39
+ else add_entity_embedding
40
+ )
41
+ self.threshold = threshold
42
+ self.binary_end_logits = binary_end_logits
43
+ self.training = training
44
+ self.default_reader_class = default_reader_class
45
+ super().__init__(**kwargs)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1373f64275ba720dd8aa09e32d7768f5896f03fd1476cbc3dfa663f9ce84a907
3
+ size 1124782884
modeling_relik.py ADDED
@@ -0,0 +1,1007 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, Optional
2
+
3
+ import torch
4
+ from transformers import AutoModel, PreTrainedModel
5
+ from transformers.activations import ClippedGELUActivation, GELUActivation
6
+ from transformers.configuration_utils import PretrainedConfig
7
+ from transformers.modeling_utils import PoolerEndLogits
8
+
9
+ from .configuration_relik import RelikReaderConfig
10
+
11
+
12
+ class RelikReaderSample:
13
+ def __init__(self, **kwargs):
14
+ super().__setattr__("_d", {})
15
+ self._d = kwargs
16
+
17
+ def __getattribute__(self, item):
18
+ return super(RelikReaderSample, self).__getattribute__(item)
19
+
20
+ def __getattr__(self, item):
21
+ if item.startswith("__") and item.endswith("__"):
22
+ # this is likely some python library-specific variable (such as __deepcopy__ for copy)
23
+ # better follow standard behavior here
24
+ raise AttributeError(item)
25
+ elif item in self._d:
26
+ return self._d[item]
27
+ else:
28
+ return None
29
+
30
+ def __setattr__(self, key, value):
31
+ if key in self._d:
32
+ self._d[key] = value
33
+ else:
34
+ super().__setattr__(key, value)
35
+ self._d[key] = value
36
+
37
+
38
+ activation2functions = {
39
+ "relu": torch.nn.ReLU(),
40
+ "gelu": GELUActivation(),
41
+ "gelu_10": ClippedGELUActivation(-10, 10),
42
+ }
43
+
44
+
45
+ class PoolerEndLogitsBi(PoolerEndLogits):
46
+ def __init__(self, config: PretrainedConfig):
47
+ super().__init__(config)
48
+ self.dense_1 = torch.nn.Linear(config.hidden_size, 2)
49
+
50
+ def forward(
51
+ self,
52
+ hidden_states: torch.FloatTensor,
53
+ start_states: Optional[torch.FloatTensor] = None,
54
+ start_positions: Optional[torch.LongTensor] = None,
55
+ p_mask: Optional[torch.FloatTensor] = None,
56
+ ) -> torch.FloatTensor:
57
+ if p_mask is not None:
58
+ p_mask = p_mask.unsqueeze(-1)
59
+ logits = super().forward(
60
+ hidden_states,
61
+ start_states,
62
+ start_positions,
63
+ p_mask,
64
+ )
65
+ return logits
66
+
67
+
68
+ class RelikReaderSpanModel(PreTrainedModel):
69
+ config_class = RelikReaderConfig
70
+
71
+ def __init__(self, config: RelikReaderConfig, *args, **kwargs):
72
+ super().__init__(config)
73
+ # Transformer model declaration
74
+ self.config = config
75
+ self.transformer_model = (
76
+ AutoModel.from_pretrained(self.config.transformer_model)
77
+ if self.config.num_layers is None
78
+ else AutoModel.from_pretrained(
79
+ self.config.transformer_model, num_hidden_layers=self.config.num_layers
80
+ )
81
+ )
82
+ self.transformer_model.resize_token_embeddings(
83
+ self.transformer_model.config.vocab_size
84
+ + self.config.additional_special_symbols
85
+ )
86
+
87
+ self.activation = self.config.activation
88
+ self.linears_hidden_size = self.config.linears_hidden_size
89
+ self.use_last_k_layers = self.config.use_last_k_layers
90
+
91
+ # named entity detection layers
92
+ self.ned_start_classifier = self._get_projection_layer(
93
+ self.activation, last_hidden=2, layer_norm=False
94
+ )
95
+ if self.config.binary_end_logits:
96
+ self.ned_end_classifier = PoolerEndLogitsBi(self.transformer_model.config)
97
+ else:
98
+ self.ned_end_classifier = PoolerEndLogits(self.transformer_model.config)
99
+
100
+ # END entity disambiguation layer
101
+ self.ed_start_projector = self._get_projection_layer(self.activation)
102
+ self.ed_end_projector = self._get_projection_layer(self.activation)
103
+
104
+ self.training = self.config.training
105
+
106
+ # criterion
107
+ self.criterion = torch.nn.CrossEntropyLoss()
108
+
109
+ def _get_projection_layer(
110
+ self,
111
+ activation: str,
112
+ last_hidden: Optional[int] = None,
113
+ input_hidden=None,
114
+ layer_norm: bool = True,
115
+ ) -> torch.nn.Sequential:
116
+ head_components = [
117
+ torch.nn.Dropout(0.1),
118
+ torch.nn.Linear(
119
+ (
120
+ self.transformer_model.config.hidden_size * self.use_last_k_layers
121
+ if input_hidden is None
122
+ else input_hidden
123
+ ),
124
+ self.linears_hidden_size,
125
+ ),
126
+ activation2functions[activation],
127
+ torch.nn.Dropout(0.1),
128
+ torch.nn.Linear(
129
+ self.linears_hidden_size,
130
+ self.linears_hidden_size if last_hidden is None else last_hidden,
131
+ ),
132
+ ]
133
+
134
+ if layer_norm:
135
+ head_components.append(
136
+ torch.nn.LayerNorm(
137
+ self.linears_hidden_size if last_hidden is None else last_hidden,
138
+ self.transformer_model.config.layer_norm_eps,
139
+ )
140
+ )
141
+
142
+ return torch.nn.Sequential(*head_components)
143
+
144
+ def _mask_logits(self, logits: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
145
+ mask = mask.unsqueeze(-1)
146
+ if next(self.parameters()).dtype == torch.float16:
147
+ logits = logits * (1 - mask) - 65500 * mask
148
+ else:
149
+ logits = logits * (1 - mask) - 1e30 * mask
150
+ return logits
151
+
152
+ def _get_model_features(
153
+ self,
154
+ input_ids: torch.Tensor,
155
+ attention_mask: torch.Tensor,
156
+ token_type_ids: Optional[torch.Tensor],
157
+ ):
158
+ model_input = {
159
+ "input_ids": input_ids,
160
+ "attention_mask": attention_mask,
161
+ "output_hidden_states": self.use_last_k_layers > 1,
162
+ }
163
+
164
+ if token_type_ids is not None:
165
+ model_input["token_type_ids"] = token_type_ids
166
+
167
+ model_output = self.transformer_model(**model_input)
168
+
169
+ if self.use_last_k_layers > 1:
170
+ model_features = torch.cat(
171
+ model_output[1][-self.use_last_k_layers :], dim=-1
172
+ )
173
+ else:
174
+ model_features = model_output[0]
175
+
176
+ return model_features
177
+
178
+ def compute_ned_end_logits(
179
+ self,
180
+ start_predictions,
181
+ start_labels,
182
+ model_features,
183
+ prediction_mask,
184
+ batch_size,
185
+ ) -> Optional[torch.Tensor]:
186
+ # todo: maybe when constraining on the spans,
187
+ # we should not use a prediction_mask for the end tokens.
188
+ # at least we should not during training imo
189
+ start_positions = start_labels if self.training else start_predictions
190
+ start_positions_indices = (
191
+ torch.arange(start_positions.size(1), device=start_positions.device)
192
+ .unsqueeze(0)
193
+ .expand(batch_size, -1)[start_positions > 0]
194
+ ).to(start_positions.device)
195
+
196
+ if len(start_positions_indices) > 0:
197
+ expanded_features = model_features.repeat_interleave(
198
+ torch.sum(start_positions > 0, dim=-1), dim=0
199
+ )
200
+ expanded_prediction_mask = prediction_mask.repeat_interleave(
201
+ torch.sum(start_positions > 0, dim=-1), dim=0
202
+ )
203
+ end_logits = self.ned_end_classifier(
204
+ hidden_states=expanded_features,
205
+ start_positions=start_positions_indices,
206
+ p_mask=expanded_prediction_mask,
207
+ )
208
+
209
+ return end_logits
210
+
211
+ return None
212
+
213
+ def compute_classification_logits(
214
+ self,
215
+ model_features_start,
216
+ model_features_end,
217
+ special_symbols_features,
218
+ ) -> torch.Tensor:
219
+ model_start_features = self.ed_start_projector(model_features_start)
220
+ model_end_features = self.ed_end_projector(model_features_end)
221
+ model_start_features_symbols = self.ed_start_projector(special_symbols_features)
222
+ model_end_features_symbols = self.ed_end_projector(special_symbols_features)
223
+
224
+ model_ed_features = torch.cat(
225
+ [model_start_features, model_end_features], dim=-1
226
+ )
227
+ special_symbols_representation = torch.cat(
228
+ [model_start_features_symbols, model_end_features_symbols], dim=-1
229
+ )
230
+
231
+ logits = torch.bmm(
232
+ model_ed_features,
233
+ torch.permute(special_symbols_representation, (0, 2, 1)),
234
+ )
235
+
236
+ logits = self._mask_logits(logits, (model_features_start == -100).all(2).long())
237
+ return logits
238
+
239
+ def forward(
240
+ self,
241
+ input_ids: torch.Tensor,
242
+ attention_mask: torch.Tensor,
243
+ token_type_ids: Optional[torch.Tensor] = None,
244
+ prediction_mask: Optional[torch.Tensor] = None,
245
+ special_symbols_mask: Optional[torch.Tensor] = None,
246
+ start_labels: Optional[torch.Tensor] = None,
247
+ end_labels: Optional[torch.Tensor] = None,
248
+ use_predefined_spans: bool = False,
249
+ *args,
250
+ **kwargs,
251
+ ) -> Dict[str, Any]:
252
+ batch_size, seq_len = input_ids.shape
253
+
254
+ model_features = self._get_model_features(
255
+ input_ids, attention_mask, token_type_ids
256
+ )
257
+
258
+ ned_start_labels = None
259
+
260
+ # named entity detection if required
261
+ if use_predefined_spans: # no need to compute spans
262
+ ned_start_logits, ned_start_probabilities, ned_start_predictions = (
263
+ None,
264
+ None,
265
+ (
266
+ torch.clone(start_labels)
267
+ if start_labels is not None
268
+ else torch.zeros_like(input_ids)
269
+ ),
270
+ )
271
+ ned_end_logits, ned_end_probabilities, ned_end_predictions = (
272
+ None,
273
+ None,
274
+ (
275
+ torch.clone(end_labels)
276
+ if end_labels is not None
277
+ else torch.zeros_like(input_ids)
278
+ ),
279
+ )
280
+ ned_start_predictions[ned_start_predictions > 0] = 1
281
+ ned_end_predictions[end_labels > 0] = 1
282
+ ned_end_predictions = ned_end_predictions[~(end_labels == -100).all(2)]
283
+
284
+ else: # compute spans
285
+ # start boundary prediction
286
+ ned_start_logits = self.ned_start_classifier(model_features)
287
+ ned_start_logits = self._mask_logits(ned_start_logits, prediction_mask)
288
+ ned_start_probabilities = torch.softmax(ned_start_logits, dim=-1)
289
+ ned_start_predictions = ned_start_probabilities.argmax(dim=-1)
290
+
291
+ # end boundary prediction
292
+ ned_start_labels = (
293
+ torch.zeros_like(start_labels) if start_labels is not None else None
294
+ )
295
+
296
+ if ned_start_labels is not None:
297
+ ned_start_labels[start_labels == -100] = -100
298
+ ned_start_labels[start_labels > 0] = 1
299
+
300
+ ned_end_logits = self.compute_ned_end_logits(
301
+ ned_start_predictions,
302
+ ned_start_labels,
303
+ model_features,
304
+ prediction_mask,
305
+ batch_size,
306
+ )
307
+
308
+ if ned_end_logits is not None:
309
+ ned_end_probabilities = torch.softmax(ned_end_logits, dim=-1)
310
+ if not self.config.binary_end_logits:
311
+ ned_end_predictions = torch.argmax(
312
+ ned_end_probabilities, dim=-1, keepdim=True
313
+ )
314
+ ned_end_predictions = torch.zeros_like(
315
+ ned_end_probabilities
316
+ ).scatter_(1, ned_end_predictions, 1)
317
+ else:
318
+ ned_end_predictions = torch.argmax(ned_end_probabilities, dim=-1)
319
+ else:
320
+ ned_end_logits, ned_end_probabilities = None, None
321
+ ned_end_predictions = ned_start_predictions.new_zeros(
322
+ batch_size, seq_len
323
+ )
324
+
325
+ if not self.training:
326
+ # if len(ned_end_predictions.shape) < 2:
327
+ # print(ned_end_predictions)
328
+ end_preds_count = ned_end_predictions.sum(1)
329
+ # If there are no end predictions for a start prediction, remove the start prediction
330
+ if (end_preds_count == 0).any() and (ned_start_predictions > 0).any():
331
+ ned_start_predictions[ned_start_predictions == 1] = (
332
+ end_preds_count != 0
333
+ ).long()
334
+ ned_end_predictions = ned_end_predictions[end_preds_count != 0]
335
+
336
+ if end_labels is not None:
337
+ end_labels = end_labels[~(end_labels == -100).all(2)]
338
+
339
+ start_position, end_position = (
340
+ (start_labels, end_labels)
341
+ if self.training
342
+ else (ned_start_predictions, ned_end_predictions)
343
+ )
344
+ start_counts = (start_position > 0).sum(1)
345
+ if (start_counts > 0).any():
346
+ ned_end_predictions = ned_end_predictions.split(start_counts.tolist())
347
+ # Entity disambiguation
348
+ if (end_position > 0).sum() > 0:
349
+ ends_count = (end_position > 0).sum(1)
350
+ model_entity_start = torch.repeat_interleave(
351
+ model_features[start_position > 0], ends_count, dim=0
352
+ )
353
+ model_entity_end = torch.repeat_interleave(
354
+ model_features, start_counts, dim=0
355
+ )[end_position > 0]
356
+ ents_count = torch.nn.utils.rnn.pad_sequence(
357
+ torch.split(ends_count, start_counts.tolist()),
358
+ batch_first=True,
359
+ padding_value=0,
360
+ ).sum(1)
361
+
362
+ model_entity_start = torch.nn.utils.rnn.pad_sequence(
363
+ torch.split(model_entity_start, ents_count.tolist()),
364
+ batch_first=True,
365
+ padding_value=-100,
366
+ )
367
+
368
+ model_entity_end = torch.nn.utils.rnn.pad_sequence(
369
+ torch.split(model_entity_end, ents_count.tolist()),
370
+ batch_first=True,
371
+ padding_value=-100,
372
+ )
373
+
374
+ ed_logits = self.compute_classification_logits(
375
+ model_entity_start,
376
+ model_entity_end,
377
+ model_features[special_symbols_mask].view(
378
+ batch_size, -1, model_features.shape[-1]
379
+ ),
380
+ )
381
+ ed_probabilities = torch.softmax(ed_logits, dim=-1)
382
+ ed_predictions = torch.argmax(ed_probabilities, dim=-1)
383
+ else:
384
+ ed_logits, ed_probabilities, ed_predictions = (
385
+ None,
386
+ ned_start_predictions.new_zeros(batch_size, seq_len),
387
+ ned_start_predictions.new_zeros(batch_size),
388
+ )
389
+ # output build
390
+ output_dict = dict(
391
+ batch_size=batch_size,
392
+ ned_start_logits=ned_start_logits,
393
+ ned_start_probabilities=ned_start_probabilities,
394
+ ned_start_predictions=ned_start_predictions,
395
+ ned_end_logits=ned_end_logits,
396
+ ned_end_probabilities=ned_end_probabilities,
397
+ ned_end_predictions=ned_end_predictions,
398
+ ed_logits=ed_logits,
399
+ ed_probabilities=ed_probabilities,
400
+ ed_predictions=ed_predictions,
401
+ )
402
+
403
+ # compute loss if labels
404
+ if start_labels is not None and end_labels is not None and self.training:
405
+ # named entity detection loss
406
+
407
+ # start
408
+ if ned_start_logits is not None:
409
+ ned_start_loss = self.criterion(
410
+ ned_start_logits.view(-1, ned_start_logits.shape[-1]),
411
+ ned_start_labels.view(-1),
412
+ )
413
+ else:
414
+ ned_start_loss = 0
415
+
416
+ # end
417
+ # use ents_count to assign the labels to the correct positions i.e. using end_labels -> [[0,0,4,0], [0,0,0,2]] -> [4,2] (this is just an element, for batch we need to mask it with ents_count), ie -> [[4,2,-100,-100], [3,1,2,-100], [1,3,2,5]]
418
+
419
+ if ned_end_logits is not None:
420
+ ed_labels = end_labels.clone()
421
+ ed_labels = torch.nn.utils.rnn.pad_sequence(
422
+ torch.split(ed_labels[ed_labels > 0], ents_count.tolist()),
423
+ batch_first=True,
424
+ padding_value=-100,
425
+ )
426
+ end_labels[end_labels > 0] = 1
427
+ if not self.config.binary_end_logits:
428
+ # transform label to position in the sequence
429
+ end_labels = end_labels.argmax(dim=-1)
430
+ ned_end_loss = self.criterion(
431
+ ned_end_logits.view(-1, ned_end_logits.shape[-1]),
432
+ end_labels.view(-1),
433
+ )
434
+ else:
435
+ ned_end_loss = self.criterion(
436
+ ned_end_logits.reshape(-1, ned_end_logits.shape[-1]),
437
+ end_labels.reshape(-1).long(),
438
+ )
439
+
440
+ # entity disambiguation loss
441
+ ed_loss = self.criterion(
442
+ ed_logits.view(-1, ed_logits.shape[-1]),
443
+ ed_labels.view(-1).long(),
444
+ )
445
+
446
+ else:
447
+ ned_end_loss = 0
448
+ ed_loss = 0
449
+
450
+ output_dict["ned_start_loss"] = ned_start_loss
451
+ output_dict["ned_end_loss"] = ned_end_loss
452
+ output_dict["ed_loss"] = ed_loss
453
+
454
+ output_dict["loss"] = ned_start_loss + ned_end_loss + ed_loss
455
+
456
+ return output_dict
457
+
458
+
459
+ class RelikReaderREModel(PreTrainedModel):
460
+ config_class = RelikReaderConfig
461
+
462
+ def __init__(self, config, *args, **kwargs):
463
+ super().__init__(config)
464
+ # Transformer model declaration
465
+ # self.transformer_model_name = transformer_model
466
+ self.config = config
467
+ self.transformer_model = (
468
+ AutoModel.from_pretrained(config.transformer_model)
469
+ if config.num_layers is None
470
+ else AutoModel.from_pretrained(
471
+ config.transformer_model, num_hidden_layers=config.num_layers
472
+ )
473
+ )
474
+ self.transformer_model.resize_token_embeddings(
475
+ self.transformer_model.config.vocab_size
476
+ + config.additional_special_symbols
477
+ + config.additional_special_symbols_types,
478
+ )
479
+
480
+ # named entity detection layers
481
+ self.ned_start_classifier = self._get_projection_layer(
482
+ config.activation, last_hidden=2, layer_norm=False
483
+ )
484
+
485
+ self.ned_end_classifier = PoolerEndLogitsBi(self.transformer_model.config)
486
+
487
+ self.relation_disambiguation_loss = (
488
+ config.relation_disambiguation_loss
489
+ if hasattr(config, "relation_disambiguation_loss")
490
+ else False
491
+ )
492
+
493
+ if self.config.entity_type_loss and self.config.add_entity_embedding:
494
+ input_hidden_ents = 3
495
+ else:
496
+ input_hidden_ents = 2
497
+
498
+ self.re_projector = self._get_projection_layer(
499
+ config.activation,
500
+ input_hidden=input_hidden_ents * self.transformer_model.config.hidden_size,
501
+ hidden=input_hidden_ents * self.config.linears_hidden_size,
502
+ last_hidden=2 * self.config.linears_hidden_size,
503
+ )
504
+
505
+ self.re_relation_projector = self._get_projection_layer(
506
+ config.activation,
507
+ input_hidden=self.transformer_model.config.hidden_size,
508
+ )
509
+
510
+ if self.config.entity_type_loss or self.relation_disambiguation_loss:
511
+ self.re_entities_projector = self._get_projection_layer(
512
+ config.activation,
513
+ input_hidden=2 * self.transformer_model.config.hidden_size,
514
+ )
515
+ self.re_definition_projector = self._get_projection_layer(
516
+ config.activation,
517
+ )
518
+
519
+ self.re_classifier = self._get_projection_layer(
520
+ config.activation,
521
+ input_hidden=config.linears_hidden_size,
522
+ last_hidden=2,
523
+ layer_norm=False,
524
+ )
525
+
526
+ self.training = config.training
527
+
528
+ # criterion
529
+ self.criterion = torch.nn.CrossEntropyLoss()
530
+ self.criterion_type = torch.nn.BCEWithLogitsLoss()
531
+
532
+ def _get_projection_layer(
533
+ self,
534
+ activation: str,
535
+ last_hidden: Optional[int] = None,
536
+ hidden: Optional[int] = None,
537
+ input_hidden=None,
538
+ layer_norm: bool = True,
539
+ ) -> torch.nn.Sequential:
540
+ head_components = [
541
+ torch.nn.Dropout(0.1),
542
+ torch.nn.Linear(
543
+ (
544
+ self.transformer_model.config.hidden_size
545
+ * self.config.use_last_k_layers
546
+ if input_hidden is None
547
+ else input_hidden
548
+ ),
549
+ self.config.linears_hidden_size if hidden is None else hidden,
550
+ ),
551
+ activation2functions[activation],
552
+ torch.nn.Dropout(0.1),
553
+ torch.nn.Linear(
554
+ self.config.linears_hidden_size if hidden is None else hidden,
555
+ self.config.linears_hidden_size if last_hidden is None else last_hidden,
556
+ ),
557
+ ]
558
+
559
+ if layer_norm:
560
+ head_components.append(
561
+ torch.nn.LayerNorm(
562
+ (
563
+ self.config.linears_hidden_size
564
+ if last_hidden is None
565
+ else last_hidden
566
+ ),
567
+ self.transformer_model.config.layer_norm_eps,
568
+ )
569
+ )
570
+
571
+ return torch.nn.Sequential(*head_components)
572
+
573
+ def _mask_logits(self, logits: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
574
+ mask = mask.unsqueeze(-1)
575
+ if next(self.parameters()).dtype == torch.float16:
576
+ logits = logits * (1 - mask) - 65500 * mask
577
+ else:
578
+ logits = logits * (1 - mask) - 1e30 * mask
579
+ return logits
580
+
581
+ def _get_model_features(
582
+ self,
583
+ input_ids: torch.Tensor,
584
+ attention_mask: torch.Tensor,
585
+ token_type_ids: Optional[torch.Tensor],
586
+ ):
587
+ model_input = {
588
+ "input_ids": input_ids,
589
+ "attention_mask": attention_mask,
590
+ "output_hidden_states": self.config.use_last_k_layers > 1,
591
+ }
592
+
593
+ if token_type_ids is not None:
594
+ model_input["token_type_ids"] = token_type_ids
595
+
596
+ model_output = self.transformer_model(**model_input)
597
+
598
+ if self.config.use_last_k_layers > 1:
599
+ model_features = torch.cat(
600
+ model_output[1][-self.config.use_last_k_layers :], dim=-1
601
+ )
602
+ else:
603
+ model_features = model_output[0]
604
+
605
+ return model_features
606
+
607
+ def compute_ned_end_logits(
608
+ self,
609
+ start_predictions,
610
+ start_labels,
611
+ model_features,
612
+ prediction_mask,
613
+ batch_size,
614
+ mask_preceding: bool = False,
615
+ ) -> Optional[torch.Tensor]:
616
+ # todo: maybe when constraining on the spans,
617
+ # we should not use a prediction_mask for the end tokens.
618
+ # at least we should not during training imo
619
+ start_positions = start_labels if self.training else start_predictions
620
+ start_positions_indices = (
621
+ torch.arange(start_positions.size(1), device=start_positions.device)
622
+ .unsqueeze(0)
623
+ .expand(batch_size, -1)[start_positions > 0]
624
+ ).to(start_positions.device)
625
+
626
+ if len(start_positions_indices) > 0:
627
+ expanded_features = model_features.repeat_interleave(
628
+ torch.sum(start_positions > 0, dim=-1), dim=0
629
+ )
630
+ expanded_prediction_mask = prediction_mask.repeat_interleave(
631
+ torch.sum(start_positions > 0, dim=-1), dim=0
632
+ )
633
+ if mask_preceding:
634
+ expanded_prediction_mask[
635
+ torch.arange(
636
+ expanded_prediction_mask.shape[1],
637
+ device=expanded_prediction_mask.device,
638
+ )
639
+ < start_positions_indices.unsqueeze(1)
640
+ ] = 1
641
+ end_logits = self.ned_end_classifier(
642
+ hidden_states=expanded_features,
643
+ start_positions=start_positions_indices,
644
+ p_mask=expanded_prediction_mask,
645
+ )
646
+
647
+ return end_logits
648
+
649
+ return None
650
+
651
+ def compute_relation_logits(
652
+ self,
653
+ model_entity_features,
654
+ special_symbols_features,
655
+ ) -> torch.Tensor:
656
+ model_subject_object_features = self.re_projector(model_entity_features)
657
+ model_subject_features = model_subject_object_features[
658
+ :, :, : model_subject_object_features.shape[-1] // 2
659
+ ]
660
+ model_object_features = model_subject_object_features[
661
+ :, :, model_subject_object_features.shape[-1] // 2 :
662
+ ]
663
+ special_symbols_start_representation = self.re_relation_projector(
664
+ special_symbols_features
665
+ )
666
+ re_logits = torch.einsum(
667
+ "bse,bde,bfe->bsdfe",
668
+ model_subject_features,
669
+ model_object_features,
670
+ special_symbols_start_representation,
671
+ )
672
+ re_logits = self.re_classifier(re_logits)
673
+
674
+ return re_logits
675
+
676
+ def compute_entity_logits(
677
+ self,
678
+ model_entity_features,
679
+ special_symbols_features,
680
+ ) -> torch.Tensor:
681
+ model_ed_features = self.re_entities_projector(model_entity_features)
682
+ special_symbols_ed_representation = self.re_definition_projector(
683
+ special_symbols_features
684
+ )
685
+
686
+ logits = torch.bmm(
687
+ model_ed_features,
688
+ torch.permute(special_symbols_ed_representation, (0, 2, 1)),
689
+ )
690
+ logits = self._mask_logits(
691
+ logits, (model_entity_features == -100).all(2).long()
692
+ )
693
+ return logits
694
+
695
+ def compute_loss(self, logits, labels, mask=None):
696
+ logits = logits.reshape(-1, logits.shape[-1])
697
+ labels = labels.reshape(-1).long()
698
+ if mask is not None:
699
+ return self.criterion(logits[mask], labels[mask])
700
+ return self.criterion(logits, labels)
701
+
702
+ def compute_ned_type_loss(
703
+ self,
704
+ disambiguation_labels,
705
+ re_ned_entities_logits,
706
+ ned_type_logits,
707
+ re_entities_logits,
708
+ entity_types,
709
+ mask,
710
+ ):
711
+ if self.config.entity_type_loss and self.relation_disambiguation_loss:
712
+ return self.criterion_type(
713
+ re_ned_entities_logits[disambiguation_labels != -100],
714
+ disambiguation_labels[disambiguation_labels != -100],
715
+ )
716
+ if self.config.entity_type_loss:
717
+ return self.criterion_type(
718
+ ned_type_logits[mask],
719
+ disambiguation_labels[:, :, :entity_types][mask],
720
+ )
721
+
722
+ if self.relation_disambiguation_loss:
723
+ return self.criterion_type(
724
+ re_entities_logits[disambiguation_labels != -100],
725
+ disambiguation_labels[disambiguation_labels != -100],
726
+ )
727
+ return 0
728
+
729
+ def compute_relation_loss(self, relation_labels, re_logits):
730
+ return self.compute_loss(
731
+ re_logits, relation_labels, relation_labels.view(-1) != -100
732
+ )
733
+
734
+ def forward(
735
+ self,
736
+ input_ids: torch.Tensor,
737
+ attention_mask: torch.Tensor,
738
+ token_type_ids: torch.Tensor,
739
+ prediction_mask: Optional[torch.Tensor] = None,
740
+ special_symbols_mask: Optional[torch.Tensor] = None,
741
+ special_symbols_mask_entities: Optional[torch.Tensor] = None,
742
+ start_labels: Optional[torch.Tensor] = None,
743
+ end_labels: Optional[torch.Tensor] = None,
744
+ disambiguation_labels: Optional[torch.Tensor] = None,
745
+ relation_labels: Optional[torch.Tensor] = None,
746
+ relation_threshold: float = None,
747
+ is_validation: bool = False,
748
+ is_prediction: bool = False,
749
+ use_predefined_spans: bool = False,
750
+ *args,
751
+ **kwargs,
752
+ ) -> Dict[str, Any]:
753
+ relation_threshold = (
754
+ self.config.threshold if relation_threshold is None else relation_threshold
755
+ )
756
+
757
+ batch_size = input_ids.shape[0]
758
+
759
+ model_features = self._get_model_features(
760
+ input_ids, attention_mask, token_type_ids
761
+ )
762
+
763
+ # named entity detection
764
+ if use_predefined_spans:
765
+ ned_start_logits, ned_start_probabilities, ned_start_predictions = (
766
+ None,
767
+ None,
768
+ torch.zeros_like(start_labels),
769
+ )
770
+ ned_end_logits, ned_end_probabilities, ned_end_predictions = (
771
+ None,
772
+ None,
773
+ torch.zeros_like(end_labels),
774
+ )
775
+
776
+ ned_start_predictions[start_labels > 0] = 1
777
+ ned_end_predictions[end_labels > 0] = 1
778
+ ned_end_predictions = ned_end_predictions[~(end_labels == -100).all(2)]
779
+ ned_start_labels = start_labels
780
+ ned_start_labels[start_labels > 0] = 1
781
+ else:
782
+ # start boundary prediction
783
+ ned_start_logits = self.ned_start_classifier(model_features)
784
+ if is_validation or is_prediction:
785
+ ned_start_logits = self._mask_logits(
786
+ ned_start_logits, prediction_mask
787
+ ) # why?
788
+ ned_start_probabilities = torch.softmax(ned_start_logits, dim=-1)
789
+ ned_start_predictions = ned_start_probabilities.argmax(dim=-1)
790
+
791
+ # end boundary prediction
792
+ ned_start_labels = (
793
+ torch.zeros_like(start_labels) if start_labels is not None else None
794
+ )
795
+
796
+ # start_labels contain entity id at their position, we just need 1 for start of entity
797
+ if ned_start_labels is not None:
798
+ ned_start_labels[start_labels == -100] = -100
799
+ ned_start_labels[start_labels > 0] = 1
800
+
801
+ # compute end logits only if there are any start predictions.
802
+ # For each start prediction, n end predictions are made
803
+ ned_end_logits = self.compute_ned_end_logits(
804
+ ned_start_predictions,
805
+ ned_start_labels,
806
+ model_features,
807
+ prediction_mask,
808
+ batch_size,
809
+ True,
810
+ )
811
+
812
+ if ned_end_logits is not None:
813
+ # For each start prediction, n end predictions are made based on
814
+ # binary classification ie. argmax at each position.
815
+ ned_end_probabilities = torch.softmax(ned_end_logits, dim=-1)
816
+ ned_end_predictions = ned_end_probabilities.argmax(dim=-1)
817
+ else:
818
+ ned_end_logits, ned_end_probabilities = None, None
819
+ ned_end_predictions = torch.zeros_like(ned_start_predictions)
820
+
821
+ if is_prediction or is_validation:
822
+ end_preds_count = ned_end_predictions.sum(1)
823
+ # If there are no end predictions for a start prediction, remove the start prediction
824
+ if (end_preds_count == 0).any() and (ned_start_predictions > 0).any():
825
+ ned_start_predictions[ned_start_predictions == 1] = (
826
+ end_preds_count != 0
827
+ ).long()
828
+ ned_end_predictions = ned_end_predictions[end_preds_count != 0]
829
+
830
+ if end_labels is not None:
831
+ end_labels = end_labels[~(end_labels == -100).all(2)]
832
+
833
+ start_position, end_position = (
834
+ (start_labels, end_labels)
835
+ if (not is_prediction and not is_validation)
836
+ else (ned_start_predictions, ned_end_predictions)
837
+ )
838
+
839
+ start_counts = (start_position > 0).sum(1)
840
+ if (start_counts > 0).any():
841
+ ned_end_predictions = ned_end_predictions.split(start_counts.tolist())
842
+ else:
843
+ ned_end_predictions = [torch.empty(0, input_ids.shape[1], dtype=torch.int64) for _ in range(batch_size)]
844
+ # limit to 30 predictions per document using start_counts, by setting all po after sum is 30 to 0
845
+ # if is_validation or is_prediction:
846
+ # ned_start_predictions[ned_start_predictions == 1] = start_counts
847
+ # We can only predict relations if we have start and end predictions
848
+ if (end_position > 0).sum() > 0:
849
+ ends_count = (end_position > 0).sum(1)
850
+ model_subject_features = torch.cat(
851
+ [
852
+ torch.repeat_interleave(
853
+ model_features[start_position > 0], ends_count, dim=0
854
+ ), # start position features
855
+ torch.repeat_interleave(model_features, start_counts, dim=0)[
856
+ end_position > 0
857
+ ], # end position features
858
+ ],
859
+ dim=-1,
860
+ )
861
+ ents_count = torch.nn.utils.rnn.pad_sequence(
862
+ torch.split(ends_count, start_counts.tolist()),
863
+ batch_first=True,
864
+ padding_value=0,
865
+ ).sum(1)
866
+ model_subject_features = torch.nn.utils.rnn.pad_sequence(
867
+ torch.split(model_subject_features, ents_count.tolist()),
868
+ batch_first=True,
869
+ padding_value=-100,
870
+ )
871
+
872
+ # if is_validation or is_prediction:
873
+ # model_subject_features = model_subject_features[:, :30, :]
874
+
875
+ # entity disambiguation. Here relation_disambiguation_loss would only be useful to
876
+ # reduce the number of candidate relations for the next step, but currently unused.
877
+ if self.config.entity_type_loss or self.relation_disambiguation_loss:
878
+ (re_ned_entities_logits) = self.compute_entity_logits(
879
+ model_subject_features,
880
+ model_features[
881
+ special_symbols_mask | special_symbols_mask_entities
882
+ ].view(batch_size, -1, model_features.shape[-1]),
883
+ )
884
+ entity_types = torch.sum(special_symbols_mask_entities, dim=1)[0].item()
885
+ ned_type_logits = re_ned_entities_logits[:, :, :entity_types]
886
+ re_entities_logits = re_ned_entities_logits[:, :, entity_types:]
887
+
888
+ if self.config.entity_type_loss:
889
+ ned_type_probabilities = torch.sigmoid(ned_type_logits)
890
+ ned_type_predictions = ned_type_probabilities.argmax(dim=-1)
891
+
892
+ if self.config.add_entity_embedding:
893
+ special_symbols_representation = model_features[
894
+ special_symbols_mask_entities
895
+ ].view(batch_size, entity_types, -1)
896
+
897
+ entities_representation = torch.einsum(
898
+ "bsp,bpe->bse",
899
+ ned_type_probabilities,
900
+ special_symbols_representation,
901
+ )
902
+ model_subject_features = torch.cat(
903
+ [model_subject_features, entities_representation], dim=-1
904
+ )
905
+ re_entities_probabilities = torch.sigmoid(re_entities_logits)
906
+ re_entities_predictions = re_entities_probabilities.round()
907
+ else:
908
+ (
909
+ ned_type_logits,
910
+ ned_type_probabilities,
911
+ re_entities_logits,
912
+ re_entities_probabilities,
913
+ ) = (None, None, None, None)
914
+ ned_type_predictions, re_entities_predictions = (
915
+ torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
916
+ torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
917
+ )
918
+
919
+ # Compute relation logits
920
+ re_logits = self.compute_relation_logits(
921
+ model_subject_features,
922
+ model_features[special_symbols_mask].view(
923
+ batch_size, -1, model_features.shape[-1]
924
+ ),
925
+ )
926
+
927
+ re_probabilities = torch.softmax(re_logits, dim=-1)
928
+ # we set a thresshold instead of argmax in cause it needs to be tweaked
929
+ re_predictions = re_probabilities[:, :, :, :, 1] > relation_threshold
930
+ re_probabilities = re_probabilities[:, :, :, :, 1]
931
+ else:
932
+ (
933
+ ned_type_logits,
934
+ ned_type_probabilities,
935
+ re_entities_logits,
936
+ re_entities_probabilities,
937
+ ) = (None, None, None, None)
938
+ ned_type_predictions, re_entities_predictions = (
939
+ torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
940
+ torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
941
+ )
942
+ re_logits, re_probabilities, re_predictions = (
943
+ torch.zeros(
944
+ [batch_size, 1, 1, special_symbols_mask.sum(1)[0]], dtype=torch.long
945
+ ).to(input_ids.device),
946
+ torch.zeros(
947
+ [batch_size, 1, 1, special_symbols_mask.sum(1)[0]], dtype=torch.long
948
+ ).to(input_ids.device),
949
+ torch.zeros(
950
+ [batch_size, 1, 1, special_symbols_mask.sum(1)[0]], dtype=torch.long
951
+ ).to(input_ids.device),
952
+ )
953
+
954
+ # output build
955
+ output_dict = dict(
956
+ batch_size=batch_size,
957
+ ned_start_logits=ned_start_logits,
958
+ ned_start_probabilities=ned_start_probabilities,
959
+ ned_start_predictions=ned_start_predictions,
960
+ ned_end_logits=ned_end_logits,
961
+ ned_end_probabilities=ned_end_probabilities,
962
+ ned_end_predictions=ned_end_predictions,
963
+ ned_type_logits=ned_type_logits,
964
+ ned_type_probabilities=ned_type_probabilities,
965
+ ned_type_predictions=ned_type_predictions,
966
+ re_entities_logits=re_entities_logits,
967
+ re_entities_probabilities=re_entities_probabilities,
968
+ re_entities_predictions=re_entities_predictions,
969
+ re_logits=re_logits,
970
+ re_probabilities=re_probabilities,
971
+ re_predictions=re_predictions,
972
+ )
973
+
974
+ if (
975
+ start_labels is not None
976
+ and end_labels is not None
977
+ and relation_labels is not None
978
+ and is_prediction is False
979
+ ):
980
+ ned_start_loss = self.compute_loss(ned_start_logits, ned_start_labels)
981
+ end_labels[end_labels > 0] = 1
982
+ ned_end_loss = self.compute_loss(ned_end_logits, end_labels)
983
+ if self.config.entity_type_loss or self.relation_disambiguation_loss:
984
+ ned_type_loss = self.compute_ned_type_loss(
985
+ disambiguation_labels,
986
+ re_ned_entities_logits,
987
+ ned_type_logits,
988
+ re_entities_logits,
989
+ entity_types,
990
+ (model_subject_features != -100).all(2),
991
+ )
992
+ relation_loss = self.compute_relation_loss(relation_labels, re_logits)
993
+ # compute loss. We can skip the relation loss if we are in the first epochs (optional)
994
+ if self.config.entity_type_loss or self.relation_disambiguation_loss:
995
+ output_dict["loss"] = (
996
+ ned_start_loss + ned_end_loss + relation_loss + ned_type_loss
997
+ ) / 4
998
+ output_dict["ned_type_loss"] = ned_type_loss
999
+ else:
1000
+ output_dict["loss"] = ((1 / 20) * (ned_start_loss + ned_end_loss)) + (
1001
+ (9 / 10) * relation_loss
1002
+ )
1003
+ output_dict["ned_start_loss"] = ned_start_loss
1004
+ output_dict["ned_end_loss"] = ned_end_loss
1005
+ output_dict["re_loss"] = relation_loss
1006
+
1007
+ return output_dict
special_tokens_map.json ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "--NME--",
4
+ "[E-0]",
5
+ "[E-1]",
6
+ "[E-2]",
7
+ "[E-3]",
8
+ "[E-4]",
9
+ "[E-5]",
10
+ "[E-6]",
11
+ "[E-7]",
12
+ "[E-8]",
13
+ "[E-9]",
14
+ "[E-10]",
15
+ "[E-11]",
16
+ "[E-12]",
17
+ "[E-13]",
18
+ "[E-14]",
19
+ "[E-15]",
20
+ "[E-16]",
21
+ "[E-17]",
22
+ "[E-18]",
23
+ "[E-19]",
24
+ "[E-20]",
25
+ "[E-21]",
26
+ "[E-22]",
27
+ "[E-23]",
28
+ "[E-24]",
29
+ "[E-25]",
30
+ "[E-26]",
31
+ "[E-27]",
32
+ "[E-28]",
33
+ "[E-29]",
34
+ "[E-30]",
35
+ "[E-31]",
36
+ "[E-32]",
37
+ "[E-33]",
38
+ "[E-34]",
39
+ "[E-35]",
40
+ "[E-36]",
41
+ "[E-37]",
42
+ "[E-38]",
43
+ "[E-39]",
44
+ "[E-40]",
45
+ "[E-41]",
46
+ "[E-42]",
47
+ "[E-43]",
48
+ "[E-44]",
49
+ "[E-45]",
50
+ "[E-46]",
51
+ "[E-47]",
52
+ "[E-48]",
53
+ "[E-49]",
54
+ "[E-50]",
55
+ "[E-51]",
56
+ "[E-52]",
57
+ "[E-53]",
58
+ "[E-54]",
59
+ "[E-55]",
60
+ "[E-56]",
61
+ "[E-57]",
62
+ "[E-58]",
63
+ "[E-59]",
64
+ "[E-60]",
65
+ "[E-61]",
66
+ "[E-62]",
67
+ "[E-63]",
68
+ "[E-64]",
69
+ "[E-65]",
70
+ "[E-66]",
71
+ "[E-67]",
72
+ "[E-68]",
73
+ "[E-69]",
74
+ "[E-70]",
75
+ "[E-71]",
76
+ "[E-72]",
77
+ "[E-73]",
78
+ "[E-74]",
79
+ "[E-75]",
80
+ "[E-76]",
81
+ "[E-77]",
82
+ "[E-78]",
83
+ "[E-79]",
84
+ "[E-80]",
85
+ "[E-81]",
86
+ "[E-82]",
87
+ "[E-83]",
88
+ "[E-84]",
89
+ "[E-85]",
90
+ "[E-86]",
91
+ "[E-87]",
92
+ "[E-88]",
93
+ "[E-89]",
94
+ "[E-90]",
95
+ "[E-91]",
96
+ "[E-92]",
97
+ "[E-93]",
98
+ "[E-94]",
99
+ "[E-95]",
100
+ "[E-96]",
101
+ "[E-97]",
102
+ "[E-98]",
103
+ "[E-99]"
104
+ ],
105
+ "bos_token": "[CLS]",
106
+ "cls_token": "[CLS]",
107
+ "eos_token": "[SEP]",
108
+ "mask_token": "[MASK]",
109
+ "pad_token": "[PAD]",
110
+ "sep_token": "[SEP]",
111
+ "unk_token": {
112
+ "content": "[UNK]",
113
+ "lstrip": false,
114
+ "normalized": true,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ }
118
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13c8d666d62a7bc4ac8f040aab68e942c861f93303156cc28f5c7e885d86d6e3
3
+ size 4305025
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b38b963be88cfff37b4f83908ee2f8c1480c38ff03a5822512377c427e13b44e
3
+ size 16349848
tokenizer_config.json ADDED
@@ -0,0 +1,970 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "[PAD]",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "[CLS]",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "[SEP]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "[UNK]",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "250101": {
37
+ "content": "[MASK]",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "250102": {
45
+ "content": "--NME--",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "250103": {
53
+ "content": "[E-0]",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "250104": {
61
+ "content": "[E-1]",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "250105": {
69
+ "content": "[E-2]",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "250106": {
77
+ "content": "[E-3]",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "250107": {
85
+ "content": "[E-4]",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "250108": {
93
+ "content": "[E-5]",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "250109": {
101
+ "content": "[E-6]",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "250110": {
109
+ "content": "[E-7]",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "250111": {
117
+ "content": "[E-8]",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "250112": {
125
+ "content": "[E-9]",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "250113": {
133
+ "content": "[E-10]",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "250114": {
141
+ "content": "[E-11]",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "250115": {
149
+ "content": "[E-12]",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "250116": {
157
+ "content": "[E-13]",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "250117": {
165
+ "content": "[E-14]",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "250118": {
173
+ "content": "[E-15]",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "250119": {
181
+ "content": "[E-16]",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "250120": {
189
+ "content": "[E-17]",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "250121": {
197
+ "content": "[E-18]",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "250122": {
205
+ "content": "[E-19]",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "250123": {
213
+ "content": "[E-20]",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "250124": {
221
+ "content": "[E-21]",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "250125": {
229
+ "content": "[E-22]",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "250126": {
237
+ "content": "[E-23]",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "250127": {
245
+ "content": "[E-24]",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "250128": {
253
+ "content": "[E-25]",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "250129": {
261
+ "content": "[E-26]",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "250130": {
269
+ "content": "[E-27]",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "250131": {
277
+ "content": "[E-28]",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "250132": {
285
+ "content": "[E-29]",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "250133": {
293
+ "content": "[E-30]",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "250134": {
301
+ "content": "[E-31]",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "250135": {
309
+ "content": "[E-32]",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": true
315
+ },
316
+ "250136": {
317
+ "content": "[E-33]",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "250137": {
325
+ "content": "[E-34]",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": true
331
+ },
332
+ "250138": {
333
+ "content": "[E-35]",
334
+ "lstrip": false,
335
+ "normalized": false,
336
+ "rstrip": false,
337
+ "single_word": false,
338
+ "special": true
339
+ },
340
+ "250139": {
341
+ "content": "[E-36]",
342
+ "lstrip": false,
343
+ "normalized": false,
344
+ "rstrip": false,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "250140": {
349
+ "content": "[E-37]",
350
+ "lstrip": false,
351
+ "normalized": false,
352
+ "rstrip": false,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "250141": {
357
+ "content": "[E-38]",
358
+ "lstrip": false,
359
+ "normalized": false,
360
+ "rstrip": false,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "250142": {
365
+ "content": "[E-39]",
366
+ "lstrip": false,
367
+ "normalized": false,
368
+ "rstrip": false,
369
+ "single_word": false,
370
+ "special": true
371
+ },
372
+ "250143": {
373
+ "content": "[E-40]",
374
+ "lstrip": false,
375
+ "normalized": false,
376
+ "rstrip": false,
377
+ "single_word": false,
378
+ "special": true
379
+ },
380
+ "250144": {
381
+ "content": "[E-41]",
382
+ "lstrip": false,
383
+ "normalized": false,
384
+ "rstrip": false,
385
+ "single_word": false,
386
+ "special": true
387
+ },
388
+ "250145": {
389
+ "content": "[E-42]",
390
+ "lstrip": false,
391
+ "normalized": false,
392
+ "rstrip": false,
393
+ "single_word": false,
394
+ "special": true
395
+ },
396
+ "250146": {
397
+ "content": "[E-43]",
398
+ "lstrip": false,
399
+ "normalized": false,
400
+ "rstrip": false,
401
+ "single_word": false,
402
+ "special": true
403
+ },
404
+ "250147": {
405
+ "content": "[E-44]",
406
+ "lstrip": false,
407
+ "normalized": false,
408
+ "rstrip": false,
409
+ "single_word": false,
410
+ "special": true
411
+ },
412
+ "250148": {
413
+ "content": "[E-45]",
414
+ "lstrip": false,
415
+ "normalized": false,
416
+ "rstrip": false,
417
+ "single_word": false,
418
+ "special": true
419
+ },
420
+ "250149": {
421
+ "content": "[E-46]",
422
+ "lstrip": false,
423
+ "normalized": false,
424
+ "rstrip": false,
425
+ "single_word": false,
426
+ "special": true
427
+ },
428
+ "250150": {
429
+ "content": "[E-47]",
430
+ "lstrip": false,
431
+ "normalized": false,
432
+ "rstrip": false,
433
+ "single_word": false,
434
+ "special": true
435
+ },
436
+ "250151": {
437
+ "content": "[E-48]",
438
+ "lstrip": false,
439
+ "normalized": false,
440
+ "rstrip": false,
441
+ "single_word": false,
442
+ "special": true
443
+ },
444
+ "250152": {
445
+ "content": "[E-49]",
446
+ "lstrip": false,
447
+ "normalized": false,
448
+ "rstrip": false,
449
+ "single_word": false,
450
+ "special": true
451
+ },
452
+ "250153": {
453
+ "content": "[E-50]",
454
+ "lstrip": false,
455
+ "normalized": false,
456
+ "rstrip": false,
457
+ "single_word": false,
458
+ "special": true
459
+ },
460
+ "250154": {
461
+ "content": "[E-51]",
462
+ "lstrip": false,
463
+ "normalized": false,
464
+ "rstrip": false,
465
+ "single_word": false,
466
+ "special": true
467
+ },
468
+ "250155": {
469
+ "content": "[E-52]",
470
+ "lstrip": false,
471
+ "normalized": false,
472
+ "rstrip": false,
473
+ "single_word": false,
474
+ "special": true
475
+ },
476
+ "250156": {
477
+ "content": "[E-53]",
478
+ "lstrip": false,
479
+ "normalized": false,
480
+ "rstrip": false,
481
+ "single_word": false,
482
+ "special": true
483
+ },
484
+ "250157": {
485
+ "content": "[E-54]",
486
+ "lstrip": false,
487
+ "normalized": false,
488
+ "rstrip": false,
489
+ "single_word": false,
490
+ "special": true
491
+ },
492
+ "250158": {
493
+ "content": "[E-55]",
494
+ "lstrip": false,
495
+ "normalized": false,
496
+ "rstrip": false,
497
+ "single_word": false,
498
+ "special": true
499
+ },
500
+ "250159": {
501
+ "content": "[E-56]",
502
+ "lstrip": false,
503
+ "normalized": false,
504
+ "rstrip": false,
505
+ "single_word": false,
506
+ "special": true
507
+ },
508
+ "250160": {
509
+ "content": "[E-57]",
510
+ "lstrip": false,
511
+ "normalized": false,
512
+ "rstrip": false,
513
+ "single_word": false,
514
+ "special": true
515
+ },
516
+ "250161": {
517
+ "content": "[E-58]",
518
+ "lstrip": false,
519
+ "normalized": false,
520
+ "rstrip": false,
521
+ "single_word": false,
522
+ "special": true
523
+ },
524
+ "250162": {
525
+ "content": "[E-59]",
526
+ "lstrip": false,
527
+ "normalized": false,
528
+ "rstrip": false,
529
+ "single_word": false,
530
+ "special": true
531
+ },
532
+ "250163": {
533
+ "content": "[E-60]",
534
+ "lstrip": false,
535
+ "normalized": false,
536
+ "rstrip": false,
537
+ "single_word": false,
538
+ "special": true
539
+ },
540
+ "250164": {
541
+ "content": "[E-61]",
542
+ "lstrip": false,
543
+ "normalized": false,
544
+ "rstrip": false,
545
+ "single_word": false,
546
+ "special": true
547
+ },
548
+ "250165": {
549
+ "content": "[E-62]",
550
+ "lstrip": false,
551
+ "normalized": false,
552
+ "rstrip": false,
553
+ "single_word": false,
554
+ "special": true
555
+ },
556
+ "250166": {
557
+ "content": "[E-63]",
558
+ "lstrip": false,
559
+ "normalized": false,
560
+ "rstrip": false,
561
+ "single_word": false,
562
+ "special": true
563
+ },
564
+ "250167": {
565
+ "content": "[E-64]",
566
+ "lstrip": false,
567
+ "normalized": false,
568
+ "rstrip": false,
569
+ "single_word": false,
570
+ "special": true
571
+ },
572
+ "250168": {
573
+ "content": "[E-65]",
574
+ "lstrip": false,
575
+ "normalized": false,
576
+ "rstrip": false,
577
+ "single_word": false,
578
+ "special": true
579
+ },
580
+ "250169": {
581
+ "content": "[E-66]",
582
+ "lstrip": false,
583
+ "normalized": false,
584
+ "rstrip": false,
585
+ "single_word": false,
586
+ "special": true
587
+ },
588
+ "250170": {
589
+ "content": "[E-67]",
590
+ "lstrip": false,
591
+ "normalized": false,
592
+ "rstrip": false,
593
+ "single_word": false,
594
+ "special": true
595
+ },
596
+ "250171": {
597
+ "content": "[E-68]",
598
+ "lstrip": false,
599
+ "normalized": false,
600
+ "rstrip": false,
601
+ "single_word": false,
602
+ "special": true
603
+ },
604
+ "250172": {
605
+ "content": "[E-69]",
606
+ "lstrip": false,
607
+ "normalized": false,
608
+ "rstrip": false,
609
+ "single_word": false,
610
+ "special": true
611
+ },
612
+ "250173": {
613
+ "content": "[E-70]",
614
+ "lstrip": false,
615
+ "normalized": false,
616
+ "rstrip": false,
617
+ "single_word": false,
618
+ "special": true
619
+ },
620
+ "250174": {
621
+ "content": "[E-71]",
622
+ "lstrip": false,
623
+ "normalized": false,
624
+ "rstrip": false,
625
+ "single_word": false,
626
+ "special": true
627
+ },
628
+ "250175": {
629
+ "content": "[E-72]",
630
+ "lstrip": false,
631
+ "normalized": false,
632
+ "rstrip": false,
633
+ "single_word": false,
634
+ "special": true
635
+ },
636
+ "250176": {
637
+ "content": "[E-73]",
638
+ "lstrip": false,
639
+ "normalized": false,
640
+ "rstrip": false,
641
+ "single_word": false,
642
+ "special": true
643
+ },
644
+ "250177": {
645
+ "content": "[E-74]",
646
+ "lstrip": false,
647
+ "normalized": false,
648
+ "rstrip": false,
649
+ "single_word": false,
650
+ "special": true
651
+ },
652
+ "250178": {
653
+ "content": "[E-75]",
654
+ "lstrip": false,
655
+ "normalized": false,
656
+ "rstrip": false,
657
+ "single_word": false,
658
+ "special": true
659
+ },
660
+ "250179": {
661
+ "content": "[E-76]",
662
+ "lstrip": false,
663
+ "normalized": false,
664
+ "rstrip": false,
665
+ "single_word": false,
666
+ "special": true
667
+ },
668
+ "250180": {
669
+ "content": "[E-77]",
670
+ "lstrip": false,
671
+ "normalized": false,
672
+ "rstrip": false,
673
+ "single_word": false,
674
+ "special": true
675
+ },
676
+ "250181": {
677
+ "content": "[E-78]",
678
+ "lstrip": false,
679
+ "normalized": false,
680
+ "rstrip": false,
681
+ "single_word": false,
682
+ "special": true
683
+ },
684
+ "250182": {
685
+ "content": "[E-79]",
686
+ "lstrip": false,
687
+ "normalized": false,
688
+ "rstrip": false,
689
+ "single_word": false,
690
+ "special": true
691
+ },
692
+ "250183": {
693
+ "content": "[E-80]",
694
+ "lstrip": false,
695
+ "normalized": false,
696
+ "rstrip": false,
697
+ "single_word": false,
698
+ "special": true
699
+ },
700
+ "250184": {
701
+ "content": "[E-81]",
702
+ "lstrip": false,
703
+ "normalized": false,
704
+ "rstrip": false,
705
+ "single_word": false,
706
+ "special": true
707
+ },
708
+ "250185": {
709
+ "content": "[E-82]",
710
+ "lstrip": false,
711
+ "normalized": false,
712
+ "rstrip": false,
713
+ "single_word": false,
714
+ "special": true
715
+ },
716
+ "250186": {
717
+ "content": "[E-83]",
718
+ "lstrip": false,
719
+ "normalized": false,
720
+ "rstrip": false,
721
+ "single_word": false,
722
+ "special": true
723
+ },
724
+ "250187": {
725
+ "content": "[E-84]",
726
+ "lstrip": false,
727
+ "normalized": false,
728
+ "rstrip": false,
729
+ "single_word": false,
730
+ "special": true
731
+ },
732
+ "250188": {
733
+ "content": "[E-85]",
734
+ "lstrip": false,
735
+ "normalized": false,
736
+ "rstrip": false,
737
+ "single_word": false,
738
+ "special": true
739
+ },
740
+ "250189": {
741
+ "content": "[E-86]",
742
+ "lstrip": false,
743
+ "normalized": false,
744
+ "rstrip": false,
745
+ "single_word": false,
746
+ "special": true
747
+ },
748
+ "250190": {
749
+ "content": "[E-87]",
750
+ "lstrip": false,
751
+ "normalized": false,
752
+ "rstrip": false,
753
+ "single_word": false,
754
+ "special": true
755
+ },
756
+ "250191": {
757
+ "content": "[E-88]",
758
+ "lstrip": false,
759
+ "normalized": false,
760
+ "rstrip": false,
761
+ "single_word": false,
762
+ "special": true
763
+ },
764
+ "250192": {
765
+ "content": "[E-89]",
766
+ "lstrip": false,
767
+ "normalized": false,
768
+ "rstrip": false,
769
+ "single_word": false,
770
+ "special": true
771
+ },
772
+ "250193": {
773
+ "content": "[E-90]",
774
+ "lstrip": false,
775
+ "normalized": false,
776
+ "rstrip": false,
777
+ "single_word": false,
778
+ "special": true
779
+ },
780
+ "250194": {
781
+ "content": "[E-91]",
782
+ "lstrip": false,
783
+ "normalized": false,
784
+ "rstrip": false,
785
+ "single_word": false,
786
+ "special": true
787
+ },
788
+ "250195": {
789
+ "content": "[E-92]",
790
+ "lstrip": false,
791
+ "normalized": false,
792
+ "rstrip": false,
793
+ "single_word": false,
794
+ "special": true
795
+ },
796
+ "250196": {
797
+ "content": "[E-93]",
798
+ "lstrip": false,
799
+ "normalized": false,
800
+ "rstrip": false,
801
+ "single_word": false,
802
+ "special": true
803
+ },
804
+ "250197": {
805
+ "content": "[E-94]",
806
+ "lstrip": false,
807
+ "normalized": false,
808
+ "rstrip": false,
809
+ "single_word": false,
810
+ "special": true
811
+ },
812
+ "250198": {
813
+ "content": "[E-95]",
814
+ "lstrip": false,
815
+ "normalized": false,
816
+ "rstrip": false,
817
+ "single_word": false,
818
+ "special": true
819
+ },
820
+ "250199": {
821
+ "content": "[E-96]",
822
+ "lstrip": false,
823
+ "normalized": false,
824
+ "rstrip": false,
825
+ "single_word": false,
826
+ "special": true
827
+ },
828
+ "250200": {
829
+ "content": "[E-97]",
830
+ "lstrip": false,
831
+ "normalized": false,
832
+ "rstrip": false,
833
+ "single_word": false,
834
+ "special": true
835
+ },
836
+ "250201": {
837
+ "content": "[E-98]",
838
+ "lstrip": false,
839
+ "normalized": false,
840
+ "rstrip": false,
841
+ "single_word": false,
842
+ "special": true
843
+ },
844
+ "250202": {
845
+ "content": "[E-99]",
846
+ "lstrip": false,
847
+ "normalized": false,
848
+ "rstrip": false,
849
+ "single_word": false,
850
+ "special": true
851
+ }
852
+ },
853
+ "additional_special_tokens": [
854
+ "--NME--",
855
+ "[E-0]",
856
+ "[E-1]",
857
+ "[E-2]",
858
+ "[E-3]",
859
+ "[E-4]",
860
+ "[E-5]",
861
+ "[E-6]",
862
+ "[E-7]",
863
+ "[E-8]",
864
+ "[E-9]",
865
+ "[E-10]",
866
+ "[E-11]",
867
+ "[E-12]",
868
+ "[E-13]",
869
+ "[E-14]",
870
+ "[E-15]",
871
+ "[E-16]",
872
+ "[E-17]",
873
+ "[E-18]",
874
+ "[E-19]",
875
+ "[E-20]",
876
+ "[E-21]",
877
+ "[E-22]",
878
+ "[E-23]",
879
+ "[E-24]",
880
+ "[E-25]",
881
+ "[E-26]",
882
+ "[E-27]",
883
+ "[E-28]",
884
+ "[E-29]",
885
+ "[E-30]",
886
+ "[E-31]",
887
+ "[E-32]",
888
+ "[E-33]",
889
+ "[E-34]",
890
+ "[E-35]",
891
+ "[E-36]",
892
+ "[E-37]",
893
+ "[E-38]",
894
+ "[E-39]",
895
+ "[E-40]",
896
+ "[E-41]",
897
+ "[E-42]",
898
+ "[E-43]",
899
+ "[E-44]",
900
+ "[E-45]",
901
+ "[E-46]",
902
+ "[E-47]",
903
+ "[E-48]",
904
+ "[E-49]",
905
+ "[E-50]",
906
+ "[E-51]",
907
+ "[E-52]",
908
+ "[E-53]",
909
+ "[E-54]",
910
+ "[E-55]",
911
+ "[E-56]",
912
+ "[E-57]",
913
+ "[E-58]",
914
+ "[E-59]",
915
+ "[E-60]",
916
+ "[E-61]",
917
+ "[E-62]",
918
+ "[E-63]",
919
+ "[E-64]",
920
+ "[E-65]",
921
+ "[E-66]",
922
+ "[E-67]",
923
+ "[E-68]",
924
+ "[E-69]",
925
+ "[E-70]",
926
+ "[E-71]",
927
+ "[E-72]",
928
+ "[E-73]",
929
+ "[E-74]",
930
+ "[E-75]",
931
+ "[E-76]",
932
+ "[E-77]",
933
+ "[E-78]",
934
+ "[E-79]",
935
+ "[E-80]",
936
+ "[E-81]",
937
+ "[E-82]",
938
+ "[E-83]",
939
+ "[E-84]",
940
+ "[E-85]",
941
+ "[E-86]",
942
+ "[E-87]",
943
+ "[E-88]",
944
+ "[E-89]",
945
+ "[E-90]",
946
+ "[E-91]",
947
+ "[E-92]",
948
+ "[E-93]",
949
+ "[E-94]",
950
+ "[E-95]",
951
+ "[E-96]",
952
+ "[E-97]",
953
+ "[E-98]",
954
+ "[E-99]"
955
+ ],
956
+ "bos_token": "[CLS]",
957
+ "clean_up_tokenization_spaces": true,
958
+ "cls_token": "[CLS]",
959
+ "do_lower_case": false,
960
+ "eos_token": "[SEP]",
961
+ "mask_token": "[MASK]",
962
+ "model_max_length": 1000000000000000019884624838656,
963
+ "pad_token": "[PAD]",
964
+ "sep_token": "[SEP]",
965
+ "sp_model_kwargs": {},
966
+ "split_by_punct": false,
967
+ "tokenizer_class": "DebertaV2Tokenizer",
968
+ "unk_token": "[UNK]",
969
+ "vocab_type": "spm"
970
+ }