LunarLanderTraining / config.json
rhr99's picture
first model training using PPO
b041420
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f20ae939ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f20ae939f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f20ae93f040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f20ae93f0d0>", "_build": "<function ActorCriticPolicy._build at 0x7f20ae93f160>", "forward": "<function ActorCriticPolicy.forward at 0x7f20ae93f1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f20ae93f280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f20ae93f310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f20ae93f3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f20ae93f430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f20ae93f4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f20ae93c180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670648226366671897, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOB1ez7Lv6s/otITP2Ulnr7rL7M+tRUCPgAAAAAAAAAAZmBwPCkIGLpONoS5BKWntIO5aLmxnJw4AACAPwAAgD9N/r89XOcMuiIlrjrr1ig1wBV0u0iSybkAAAAAAACAP+bvrD09Sgq5uGC+unOumLUWyBG7tt7dOQAAgD8AAIA/GlJzPVJI4Lm+2yC6faqvs8safLsDqMgxAACAPwAAgD/miHo9XCN2utI/lzoRypE1ZNyfukHNsLkAAIA/AACAP0Bbwj2F6/i5c/BmuIRkvjXruS+7HsmGNwAAgD8AAIA/mttaPLhG3rlNmKo7+0AsOGOESTtOTae3AACAPwAAgD+aQRw7KcQTuqa3iLoObfG11b4FO27voDkAAIA/AACAPxpRlr0pEGe6JaxFPJ/AMTamf9I6QDAtNQAAgD8AAIA/quWwPrRhHj+VOCm+++OlvoGbYT0Eu7Y9AAAAAAAAAAAzSR89hWP/uVr8MzrvdLy0E5vnuzPzUrkAAIA/AACAP7aDab4rD0s/HbR7O7ZVhL7IZKC989wCPgAAAAAAAAAAZo/fvCmwcrpg5Yu6/hRstrZf2br7Itc1AACAPwAAgD8Wc06+m72MP+u4BL6vK1a+uexWvmV9vTwAAAAAAAAAAABCqTx76Jy6mfyHM6nSE7Dhtwo7hHy4swAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/rloyHjOW0CUhpRSlIwBbJRN6AOMAXSUR0CUVrXiBGx2dX2UKGgGaAloD0MILQjlfRwaYUCUhpRSlGgVTegDaBZHQJRbqLyc0+F1fZQoaAZoCWgPQwi1pQ7y+jxhQJSGlFKUaBVN6ANoFkdAlF0m6ClJpXV9lChoBmgJaA9DCAvVzcVfa2FAlIaUUpRoFU3oA2gWR0CUZd5YYBNmdX2UKGgGaAloD0MILexphz9/ZUCUhpRSlGgVTegDaBZHQJR2FW4mTkh1fZQoaAZoCWgPQwgDsAER4kdmQJSGlFKUaBVN6ANoFkdAlIv8CDEm6XV9lChoBmgJaA9DCM9OBkdJRmFAlIaUUpRoFU3oA2gWR0CUjDlQdjoZdX2UKGgGaAloD0MI3xgCgGPyWkCUhpRSlGgVTegDaBZHQJSM3Ackt291fZQoaAZoCWgPQwj7V1aalO5ZQJSGlFKUaBVN6ANoFkdAlI8HCO3lS3V9lChoBmgJaA9DCHVVoBYDiWNAlIaUUpRoFU3oA2gWR0CUlctYjjaPdX2UKGgGaAloD0MIBcQkXMjHZECUhpRSlGgVTegDaBZHQJSWSTpxFRZ1fZQoaAZoCWgPQwgxe9l2WtdmQJSGlFKUaBVN6ANoFkdAlJbGXC0ngHV9lChoBmgJaA9DCD/9Z80Pa2dAlIaUUpRoFU3oA2gWR0CUmCZVn27GdX2UKGgGaAloD0MI3NlXHiTVYECUhpRSlGgVTegDaBZHQJSdASGrS3N1fZQoaAZoCWgPQwg/jBAebbZjQJSGlFKUaBVN6ANoFkdAlKKMl9jPOnV9lChoBmgJaA9DCADK370jP2NAlIaUUpRoFU3oA2gWR0CUpWnbqQiidX2UKGgGaAloD0MIw2SqYNTyZUCUhpRSlGgVTegDaBZHQJSoC5RTCLx1fZQoaAZoCWgPQwhv1uB91bdhQJSGlFKUaBVN6ANoFkdAlKzAdsBQvnV9lChoBmgJaA9DCChjfJg9ZWNAlIaUUpRoFU3oA2gWR0CUrlAxi5NHdX2UKGgGaAloD0MIq10T0hoqZECUhpRSlGgVTegDaBZHQJS3lAUtZmt1fZQoaAZoCWgPQwhOYhBYOfxjQJSGlFKUaBVN6ANoFkdAlMjPB3zMA3V9lChoBmgJaA9DCH5S7dPxxlxAlIaUUpRoFU3oA2gWR0CU31ahHskZdX2UKGgGaAloD0MIFeRnI1eFYUCUhpRSlGgVTegDaBZHQJTfjBDXvph1fZQoaAZoCWgPQwgnvW98bU1kQJSGlFKUaBVN6ANoFkdAlOAsIZ62OXV9lChoBmgJaA9DCPWc9L7xSF5AlIaUUpRoFU3oA2gWR0CU4mxUedTYdX2UKGgGaAloD0MI323eOKmXZkCUhpRSlGgVTegDaBZHQJTpCBPKuCB1fZQoaAZoCWgPQwjaWIl51j9mQJSGlFKUaBVN6ANoFkdAlOmHIZIg/3V9lChoBmgJaA9DCGXggJYuA2JAlIaUUpRoFU3oA2gWR0CU6g7ojfNzdX2UKGgGaAloD0MIIR6Jl6cSZ0CUhpRSlGgVTegDaBZHQJTrdULlV951fZQoaAZoCWgPQwjPukbLgbRdQJSGlFKUaBVN6ANoFkdAlPA88TzunnV9lChoBmgJaA9DCJaX/E/+jWNAlIaUUpRoFU3oA2gWR0CU9d5UcXFcdX2UKGgGaAloD0MIvk7qy9IJX0CUhpRSlGgVTegDaBZHQJT4/0ulGgB1fZQoaAZoCWgPQwiiRiHJLHNiQJSGlFKUaBVN6ANoFkdAlPvHnhbW3HV9lChoBmgJaA9DCFn9EYaB4mdAlIaUUpRoFU3oA2gWR0CVAJVWjoIOdX2UKGgGaAloD0MI/wdYq3YOX0CUhpRSlGgVTegDaBZHQJUCMKpkwvh1fZQoaAZoCWgPQwinejL/6LRkQJSGlFKUaBVN6ANoFkdAlQuRPoFFD3V9lChoBmgJaA9DCIulSL4SbExAlIaUUpRoFU0eAWgWR0CVDpg6U7jldX2UKGgGaAloD0MIvcRYpl/kWECUhpRSlGgVTegDaBZHQJUcg1He7+V1fZQoaAZoCWgPQwiuZMdGoLBhQJSGlFKUaBVN6ANoFkdAlR+jr7fpEHV9lChoBmgJaA9DCOv822W/mFxAlIaUUpRoFU3oA2gWR0CVH9dadMCcdX2UKGgGaAloD0MIOwDirt4OYkCUhpRSlGgVTegDaBZHQJUzRywOe8R1fZQoaAZoCWgPQwhf7pOjADkwQJSGlFKUaBVNNwFoFkdAlTQILPUrkXV9lChoBmgJaA9DCA6hSs0eqWVAlIaUUpRoFU3oA2gWR0CVNVuvllshdX2UKGgGaAloD0MIXW4w1OG3ZUCUhpRSlGgVTegDaBZHQJU7tdY4hll1fZQoaAZoCWgPQwjmCBnIs+tjQJSGlFKUaBVN6ANoFkdAlTwsEq2BrnV9lChoBmgJaA9DCBXHgVdLqWJAlIaUUpRoFU3oA2gWR0CVPJU83dbgdX2UKGgGaAloD0MIJET5gpaGYkCUhpRSlGgVTegDaBZHQJU9u9ugpSd1fZQoaAZoCWgPQwiEK6BQTwszQJSGlFKUaBVNDAFoFkdAlUFBGc4HX3V9lChoBmgJaA9DCKDE504wB2ZAlIaUUpRoFU3oA2gWR0CVQdcWCVbBdX2UKGgGaAloD0MIEr2MYjnPZUCUhpRSlGgVTegDaBZHQJVGt0q6OHZ1fZQoaAZoCWgPQwjajT7mA3BiQJSGlFKUaBVN6ANoFkdAlUlO1Bt1p3V9lChoBmgJaA9DCIrJG2DmOxTAlIaUUpRoFU0TAWgWR0CVSo88s+V1dX2UKGgGaAloD0MI9iUbDzYPcECUhpRSlGgVTeQBaBZHQJVOUtCiRGN1fZQoaAZoCWgPQwjD1mzlJTVgQJSGlFKUaBVN6ANoFkdAlVBdXDFZPnV9lChoBmgJaA9DCLOY2Hxcvl1AlIaUUpRoFU3oA2gWR0CVUcDJEH+qdX2UKGgGaAloD0MIKgMHtHSIbUCUhpRSlGgVTY0CaBZHQJVWUKG+K0l1fZQoaAZoCWgPQwhIMxZNZ0ZeQJSGlFKUaBVN6ANoFkdAlVxVRDTjN3V9lChoBmgJaA9DCK1RD9HoXGVAlIaUUpRoFU3oA2gWR0CVaoiPhhphdX2UKGgGaAloD0MIiQtAo3SEYkCUhpRSlGgVTegDaBZHQJVuBHZsbed1fZQoaAZoCWgPQwj2tS41wvVtQJSGlFKUaBVN4QNoFkdAlYOhOP/7znV9lChoBmgJaA9DCJNvtrmx0WNAlIaUUpRoFU3oA2gWR0CVi4dwvQF+dX2UKGgGaAloD0MIzTtO0ZFwXUCUhpRSlGgVTegDaBZHQJWMojB2wFF1fZQoaAZoCWgPQwisyr4rggthQJSGlFKUaBVN6ANoFkdAlY44hY/3WXV9lChoBmgJaA9DCEwXYvXHXGdAlIaUUpRoFU3oA2gWR0CVkpUA1ejVdX2UKGgGaAloD0MIK6bSTzh4ZUCUhpRSlGgVTegDaBZHQJWTO8BdUsF1fZQoaAZoCWgPQwh06zU9qO9iQJSGlFKUaBVN6ANoFkdAlZiOHaewtHV9lChoBmgJaA9DCGH7yRgfEGRAlIaUUpRoFU3oA2gWR0CVmzVYISlFdX2UKGgGaAloD0MI2EenrnxpYkCUhpRSlGgVTegDaBZHQJWceKO1fE51fZQoaAZoCWgPQwh4fHvXoC8hQJSGlFKUaBVNCwFoFkdAlZ4KeXiR4nV9lChoBmgJaA9DCOlhaHXyC2RAlIaUUpRoFU3oA2gWR0CVoCEETxoadX2UKGgGaAloD0MI6gjgZnEAY0CUhpRSlGgVTegDaBZHQJWiRsxfv4N1fZQoaAZoCWgPQwguxVVl36BcQJSGlFKUaBVN6ANoFkdAlaPI065oXnV9lChoBmgJaA9DCG3n+6lx0GVAlIaUUpRoFU3oA2gWR0CVqKUONHYpdX2UKGgGaAloD0MI9WOT/IjBQkCUhpRSlGgVTS8BaBZHQJWtjaakRBh1fZQoaAZoCWgPQwjryfyjb0xDQJSGlFKUaBVLymgWR0CVrqvJRwZPdX2UKGgGaAloD0MIGR9mL9sIZ0CUhpRSlGgVTegDaBZHQJWvLIT4+KV1fZQoaAZoCWgPQwiH4LiMG/RwQJSGlFKUaBVNSgNoFkdAlbSBouf29XV9lChoBmgJaA9DCPlISnoYrGBAlIaUUpRoFU3oA2gWR0CVuwbkOqecdX2UKGgGaAloD0MIM1LvqRyVY0CUhpRSlGgVTegDaBZHQJXAnoaDPGB1fZQoaAZoCWgPQwj/JD53AqBlQJSGlFKUaBVN6ANoFkdAleIJR0lqrXV9lChoBmgJaA9DCE94CU79XmBAlIaUUpRoFU3oA2gWR0CV45GcFyJbdX2UKGgGaAloD0MICY1g43rXb0CUhpRSlGgVTWYDaBZHQJXpk8mrsB11fZQoaAZoCWgPQwgbuW5K+RllQJSGlFKUaBVN6ANoFkdAlev4tg8bJnV9lChoBmgJaA9DCNFZZhEKpWRAlIaUUpRoFU3oA2gWR0CV7MYrJ8v3dX2UKGgGaAloD0MITrNAu0MBX0CUhpRSlGgVTegDaBZHQJX1EYwZflZ1fZQoaAZoCWgPQwh39SoyOiQ8QJSGlFKUaBVLxGgWR0CV9SEQXhwVdX2UKGgGaAloD0MI8kHPZtXfIUCUhpRSlGgVTRwBaBZHQJX1IqtozvZ1fZQoaAZoCWgPQwhqF9NM941mQJSGlFKUaBVN6ANoFkdAlfZ+5vtMPHV9lChoBmgJaA9DCAq/1M8bgWZAlIaUUpRoFU3oA2gWR0CV+EQUYbbUdX2UKGgGaAloD0MIHZJaKJkhY0CUhpRSlGgVTegDaBZHQJX7KyiVSoB1fZQoaAZoCWgPQwhWRE30+Z9TQJSGlFKUaBVN6ANoFkdAlf9CpzcRDnV9lChoBmgJaA9DCHkj88ifbWFAlIaUUpRoFU3oA2gWR0CWA2V4X40udX2UKGgGaAloD0MIwLLSpJS3YUCUhpRSlGgVTegDaBZHQJYEZfoicG11fZQoaAZoCWgPQwj2QgHbwUj5v5SGlFKUaBVNEgFoFkdAlgRn3cpLEnV9lChoBmgJaA9DCGHD0yvlR2dAlIaUUpRoFU3oA2gWR0CWBMf4h2W6dX2UKGgGaAloD0MIC9KMRVOCY0CUhpRSlGgVTegDaBZHQJYJNEuxrzp1fZQoaAZoCWgPQwjNctnonG1fQJSGlFKUaBVN6ANoFkdAlg72vjfelHV9lChoBmgJaA9DCLdELjiD9UlAlIaUUpRoFU0KAWgWR0CWEUcXWOIZdX2UKGgGaAloD0MIvYqMDkhCG8CUhpRSlGgVS7FoFkdAlhKyl7+kxnV9lChoBmgJaA9DCHr+tFGdPGNAlIaUUpRoFU3oA2gWR0CWE/cOby6MdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}