Delete README.md
Browse files
README.md
DELETED
@@ -1,75 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import joblib
|
4 |
-
import numpy as np
|
5 |
-
import pandas as pd
|
6 |
-
from transformers import AutoTokenizer, AutoModel
|
7 |
-
|
8 |
-
# Load IndoBERT tokenizer
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained("indolem/indobert-base-uncased")
|
10 |
-
|
11 |
-
# Load IndoBERT model
|
12 |
-
model = AutoModel.from_pretrained("indolem/indobert-base-uncased")
|
13 |
-
|
14 |
-
# Mapping dictionaries for labels
|
15 |
-
priority_score_mapping = {1: "LOW", 2: "MEDIUM", 3: "HIGH"}
|
16 |
-
problem_domain_mapping = {0: "OPERATIONAL", 1: "TECHNICAL"}
|
17 |
-
|
18 |
-
# Load the trained Random Forest models
|
19 |
-
best_classifier1 = joblib.load('best_classifier1_optimized.pkl')
|
20 |
-
best_classifier2 = joblib.load('best_classifier2_optimized.pkl')
|
21 |
-
|
22 |
-
markdown_text = '''
|
23 |
-
## Label Description
|
24 |
-
### Priority Score
|
25 |
-
* **Low** label, means that the temporary/corrective solution can solve the problem. A permanent solution will be provided later because the impact on the business can still be handled.
|
26 |
-
* **Medium** label, means that there's a need to determine the time constraint to solve the problem. If it remains too long, it will impact the business side.
|
27 |
-
* **High** label, means that the problem is urgent and must be solved immediately.
|
28 |
-
### Problem Domain
|
29 |
-
* **Operational** label, means that the scope of the problem is on the business or daily operational.
|
30 |
-
* **Technical** label, means that the scope of the problem is on the technical (technology) side like the mobile/web application.
|
31 |
-
'''
|
32 |
-
|
33 |
-
description="Write the feedback about the capsule hotel that you've ever visited or stayed there. The machine learning model will predict the priority score and problem domain of the feedback."
|
34 |
-
|
35 |
-
# Function to perform predictions
|
36 |
-
def predict(text):
|
37 |
-
# Convert the sentences into input features
|
38 |
-
encoded_inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt", max_length=128)
|
39 |
-
|
40 |
-
# Perform word embedding using IndoBERT model
|
41 |
-
with torch.no_grad():
|
42 |
-
outputs = model(**encoded_inputs)
|
43 |
-
embeddings = outputs.last_hidden_state
|
44 |
-
|
45 |
-
# Convert the embeddings to numpy array
|
46 |
-
embeddings = embeddings.numpy()
|
47 |
-
|
48 |
-
embeddings_custom_flat = embeddings.reshape(embeddings.shape[0], -1)
|
49 |
-
|
50 |
-
# Ensure mean_pooled_embeddings has exactly 768 features
|
51 |
-
num_features_expected = 768
|
52 |
-
if embeddings_custom_flat.shape[1] < num_features_expected:
|
53 |
-
# If the number of features is less than 768, pad the embeddings
|
54 |
-
pad_width = num_features_expected - embeddings_custom_flat.shape[1]
|
55 |
-
embeddings_custom_flat = np.pad(embeddings_custom_flat, ((0, 0), (0, pad_width)), mode='constant')
|
56 |
-
|
57 |
-
elif embeddings_custom_flat.shape[1] > num_features_expected:
|
58 |
-
# If the number of features is more than 768, truncate the embeddings
|
59 |
-
embeddings_custom_flat = embeddings_custom_flat[:, :num_features_expected]
|
60 |
-
|
61 |
-
# Predict the priority_score for the custom input
|
62 |
-
custom_priority_score = best_classifier1.predict(embeddings_custom_flat)
|
63 |
-
|
64 |
-
# Predict the problem_domain for the custom input
|
65 |
-
custom_problem_domain = best_classifier2.predict(embeddings_custom_flat)
|
66 |
-
|
67 |
-
# Map numerical labels to human-readable labels
|
68 |
-
mapped_priority_score = priority_score_mapping.get(custom_priority_score[0], "unknown")
|
69 |
-
mapped_problem_domain = problem_domain_mapping.get(custom_problem_domain[0], "unknown")
|
70 |
-
|
71 |
-
return f"Predicted Priority Score: {mapped_priority_score}, Predicted Problem Domain: {mapped_problem_domain}"
|
72 |
-
|
73 |
-
|
74 |
-
# Create a Gradio interface
|
75 |
-
gr.Interface(fn=predict, inputs="text", outputs="text", title="Simple Risk Classifier Demo (Case Study: Capsule Hotel)", description=description, article=markdown_text).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|