revusyi commited on
Commit
2d81eca
·
verified ·
1 Parent(s): 7a56612

End of training

Browse files
Files changed (2) hide show
  1. README.md +154 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.1
4
+ base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 6a181537-4ee3-455b-816c-de3c07eb2b95
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 5aa83f03f5036ffe_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/5aa83f03f5036ffe_train_data.json
32
+ type:
33
+ field_instruction: instruction
34
+ field_output: id
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ early_stopping_patience: 1
42
+ eval_max_new_tokens: 128
43
+ eval_steps: 25
44
+ eval_table_size: null
45
+ flash_attention: false
46
+ fp16: false
47
+ fsdp: null
48
+ fsdp_config: null
49
+ gradient_accumulation_steps: 4
50
+ gradient_checkpointing: true
51
+ group_by_length: true
52
+ hub_model_id: revusyi/6a181537-4ee3-455b-816c-de3c07eb2b95
53
+ hub_repo: null
54
+ hub_strategy: checkpoint
55
+ hub_token: null
56
+ learning_rate: 0.0002
57
+ load_in_4bit: false
58
+ load_in_8bit: false
59
+ local_rank: null
60
+ logging_steps: 1
61
+ lora_alpha: 32
62
+ lora_dropout: 0.05
63
+ lora_fan_in_fan_out: null
64
+ lora_model_dir: null
65
+ lora_r: 16
66
+ lora_target_linear: true
67
+ lr_scheduler: cosine
68
+ max_memory:
69
+ 0: 70GB
70
+ max_steps: 50
71
+ micro_batch_size: 2
72
+ mlflow_experiment_name: /tmp/5aa83f03f5036ffe_train_data.json
73
+ model_type: AutoModelForCausalLM
74
+ num_epochs: 3
75
+ optimizer: adamw_torch
76
+ output_dir: miner_id_24
77
+ pad_to_sequence_len: true
78
+ resume_from_checkpoint: null
79
+ s2_attention: null
80
+ sample_packing: false
81
+ save_steps: 25
82
+ sequence_len: 4056
83
+ special_tokens:
84
+ pad_token: <|eot_id|>
85
+ strict: false
86
+ tf32: false
87
+ tokenizer_type: AutoTokenizer
88
+ train_on_inputs: false
89
+ trust_remote_code: true
90
+ val_set_size: 0.05
91
+ wandb_entity: taoxminer-education
92
+ wandb_mode: online
93
+ wandb_name: 6a181537-4ee3-455b-816c-de3c07eb2b95
94
+ wandb_project: god
95
+ wandb_run: taoxminer
96
+ wandb_runid: 6a181537-4ee3-455b-816c-de3c07eb2b95
97
+ warmup_ratio: 0.05
98
+ weight_decay: 0.01
99
+ xformers_attention: true
100
+
101
+ ```
102
+
103
+ </details><br>
104
+
105
+ # 6a181537-4ee3-455b-816c-de3c07eb2b95
106
+
107
+ This model is a fine-tuned version of [VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct) on the None dataset.
108
+ It achieves the following results on the evaluation set:
109
+ - Loss: 0.5191
110
+
111
+ ## Model description
112
+
113
+ More information needed
114
+
115
+ ## Intended uses & limitations
116
+
117
+ More information needed
118
+
119
+ ## Training and evaluation data
120
+
121
+ More information needed
122
+
123
+ ## Training procedure
124
+
125
+ ### Training hyperparameters
126
+
127
+ The following hyperparameters were used during training:
128
+ - learning_rate: 0.0002
129
+ - train_batch_size: 2
130
+ - eval_batch_size: 2
131
+ - seed: 42
132
+ - gradient_accumulation_steps: 4
133
+ - total_train_batch_size: 8
134
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
135
+ - lr_scheduler_type: cosine
136
+ - lr_scheduler_warmup_steps: 2
137
+ - training_steps: 50
138
+
139
+ ### Training results
140
+
141
+ | Training Loss | Epoch | Step | Validation Loss |
142
+ |:-------------:|:------:|:----:|:---------------:|
143
+ | 11.6662 | 0.0001 | 1 | 12.0786 |
144
+ | 0.0104 | 0.0017 | 25 | 0.5998 |
145
+ | 0.1768 | 0.0034 | 50 | 0.5191 |
146
+
147
+
148
+ ### Framework versions
149
+
150
+ - PEFT 0.13.2
151
+ - Transformers 4.46.0
152
+ - Pytorch 2.5.0+cu124
153
+ - Datasets 3.0.1
154
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bb1c5ba9508d706f9339698af85a3c54ddc10f7c621bddf31339a0d9f024e9a
3
+ size 167934026