|
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
from PIL import Image |
|
|
import torch |
|
|
|
|
|
MODEL_ID = "unsloth/qwen2.5-vl-7b-instruct" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
MODEL_ID, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True |
|
|
) |
|
|
|
|
|
def infer(request): |
|
|
messages = request.get("messages", []) |
|
|
images = request.get("images", []) |
|
|
|
|
|
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device) |
|
|
outputs = model.generate(**inputs, max_new_tokens=512) |
|
|
return {"text": tokenizer.decode(outputs[0])} |
|
|
|