resosteen commited on
Commit
86fca79
1 Parent(s): ab4f951

Complete unit 1 of the course by training the model on the LunarLander-v2 environment.

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 193.03 +/- 105.07
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f49f06e9940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49f06e99d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49f06e9a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49f06e9af0>", "_build": "<function ActorCriticPolicy._build at 0x7f49f06e9b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f49f06e9c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f49f06e9ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49f06e9d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f49f06e9dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49f06e9e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49f06e9ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49f06e9f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f49f06e3a20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673623117227300818, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADJtx76jaFU/AR2yvjZYrL4aV2m+DSRnugAAAAAAAAAAZjRIPpApXz+udbc9QgOevga9tz3hQ4a9AAAAAAAAAACaXxo99rwoukf9xzvPTK84F6O0uzv/fLoAAIA/AACAP00mL72z4cc+NqjTvR18TL7tsQ29k4XcvAAAAAAAAAAAzXSlu1z3BbrtLtm7oJQLNWrcH7uWx320AACAPwAAgD8ATIs8uG6/uUYVG7zk/cO0SroXu6a+MTQAAIA/AACAPwAt5D17YLu6NSNwvSe3jTt2mDQ7VHmJvAAAAAAAAIA/s3mbPRTalrrALdS7K5CRNlDE5bqgGQK2AACAPwAAgD/NHKa6e0CKuiwMmbsr5zm29pcbO/94pDUAAIA/AACAPzOcCj1IyYq6iguxO/KmmzgEHyi7WKG6uQAAgD8AAIA/5rPDPejfyj5mP0q9GhBbvt/51LzOZIU8AAAAAAAAAACzICS9SKWQumc2Srmm8Zk1csoAu4vjBbUAAIA/AACAP6ZG/T3hiJ68wnqjPRcvVjyZVgq+EnsmPQAAAAAAAIA/Gp6IPUg7iLo5p485Ens6tqoaDTqiYqa4AACAPwAAgD9trAY+ONqIu27kk7ttQQA6bRTPvN5wtDoAAIA/AACAP00qOz5OQXg/aDQJPqQ/fL57VAg+6kw+vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIm3PwTOjMY0CUhpRSlIwBbJRN6AOMAXSUR0CXH9t8NQTFdX2UKGgGaAloD0MIMLyS5LkOHUCUhpRSlGgVTSsBaBZHQJchVcophF51fZQoaAZoCWgPQwgTukvirJFaQJSGlFKUaBVN6ANoFkdAlyUe4G2TgXV9lChoBmgJaA9DCBQF+kSehWFAlIaUUpRoFU3oA2gWR0CXJZNmlImPdX2UKGgGaAloD0MIMZqV7UPmYECUhpRSlGgVTegDaBZHQJco9WeYlY51fZQoaAZoCWgPQwj7srRTc8NjQJSGlFKUaBVN6ANoFkdAlykDfBN21XV9lChoBmgJaA9DCBWOIJViY2hAlIaUUpRoFU3oA2gWR0CXKiKwIMScdX2UKGgGaAloD0MINNjUedRaY0CUhpRSlGgVTegDaBZHQJcxuFdszl91fZQoaAZoCWgPQwhYAFMGDgNkQJSGlFKUaBVN6ANoFkdAl0eEtyxRmHV9lChoBmgJaA9DCCp0XmOXNGBAlIaUUpRoFU3oA2gWR0CXSBFfiPyTdX2UKGgGaAloD0MIOGbZk8AGRECUhpRSlGgVS/loFkdAl0hR//echHV9lChoBmgJaA9DCERq2sW04WNAlIaUUpRoFU3oA2gWR0CXSa04R28qdX2UKGgGaAloD0MITDeJQWBRYkCUhpRSlGgVTegDaBZHQJdNgdmxt551fZQoaAZoCWgPQwgxmSoYFcpkQJSGlFKUaBVN6ANoFkdAl02N2TxG2HV9lChoBmgJaA9DCAXeyafH6WNAlIaUUpRoFU3oA2gWR0CXWtiRW912dX2UKGgGaAloD0MIoKUr2EZVZkCUhpRSlGgVTegDaBZHQJdg46T4cm11fZQoaAZoCWgPQwjpnJ/iOHdbQJSGlFKUaBVN6ANoFkdAl2XxNucc2nV9lChoBmgJaA9DCHJsPUM45ldAlIaUUpRoFU3oA2gWR0CXbMfTCtRvdX2UKGgGaAloD0MI+IpuvSa8YUCUhpRSlGgVTegDaBZHQJduY2vStvJ1fZQoaAZoCWgPQwi62/XSlDhiQJSGlFKUaBVN6ANoFkdAl3JW4RVZLnV9lChoBmgJaA9DCKzJU1bTCWRAlIaUUpRoFU3oA2gWR0CXctnWrfcfdX2UKGgGaAloD0MIgsR29wAdZkCUhpRSlGgVTegDaBZHQJd2PZElVtJ1fZQoaAZoCWgPQwiLiGLyBq5hQJSGlFKUaBVN6ANoFkdAl3eHvUjLS3V9lChoBmgJaA9DCMaIRKFl/QrAlIaUUpRoFUvtaBZHQJd5rQOWjXZ1fZQoaAZoCWgPQwh6NUBpqM1gQJSGlFKUaBVN6ANoFkdAl39GMfigkHV9lChoBmgJaA9DCGnGouls7WNAlIaUUpRoFU3oA2gWR0CXlRbExZdOdX2UKGgGaAloD0MIUcHhBZH2YUCUhpRSlGgVTegDaBZHQJeVovL5h0B1fZQoaAZoCWgPQwilEMglDm5hQJSGlFKUaBVN6ANoFkdAl5XiwKSgXnV9lChoBmgJaA9DCKJESx5PHzdAlIaUUpRoFUv8aBZHQJeWFMYdhiN1fZQoaAZoCWgPQwiTHRuB+NNgQJSGlFKUaBVN6ANoFkdAl5cOX/o7m3V9lChoBmgJaA9DCOi+nNmuY2JAlIaUUpRoFU3oA2gWR0CXmlGnn+yadX2UKGgGaAloD0MIx7ji4qhcY0CUhpRSlGgVTegDaBZHQJeaXtfG+9J1fZQoaAZoCWgPQwgr2hznNuEmQJSGlFKUaBVL9mgWR0CXncxY7q6fdX2UKGgGaAloD0MI/aNv0jSVUECUhpRSlGgVS91oFkdAl596FM7EHnV9lChoBmgJaA9DCCy3tBqS1WZAlIaUUpRoFU3oA2gWR0CXpYl/6O5sdX2UKGgGaAloD0MIdQZGXtZUFECUhpRSlGgVS+BoFkdAl6W4/RmbsnV9lChoBmgJaA9DCN9sc2N69mFAlIaUUpRoFU3oA2gWR0CXqtTRYzSDdX2UKGgGaAloD0MIZRu4A3XCYUCUhpRSlGgVTegDaBZHQJevgCZF5Od1fZQoaAZoCWgPQwgOhc/WwRNlQJSGlFKUaBVN6ANoFkdAl7g2f5DZ13V9lChoBmgJaA9DCK2FWWhn/mZAlIaUUpRoFU3oA2gWR0CXvL3IuGsWdX2UKGgGaAloD0MIn6ut2F/xXkCUhpRSlGgVTegDaBZHQJe9U+7lJYl1fZQoaAZoCWgPQwjIe9XKBAJiQJSGlFKUaBVN6ANoFkdAl8KEWVNYbXV9lChoBmgJaA9DCCcW+Irut2RAlIaUUpRoFU3oA2gWR0CXxORwZOzqdX2UKGgGaAloD0MIOdTvwtbwQECUhpRSlGgVS+poFkdAl8pf0ulGgHV9lChoBmgJaA9DCJz51RwgAFBAlIaUUpRoFUv9aBZHQJfK6GHpKSR1fZQoaAZoCWgPQwiCPLt8az1iQJSGlFKUaBVN6ANoFkdAl86Qpe/pMnV9lChoBmgJaA9DCJkMx/MZD15AlIaUUpRoFU3oA2gWR0CXztM5wOvudX2UKGgGaAloD0MIFK+ytinsX0CUhpRSlGgVTegDaBZHQJfhXR/mT1V1fZQoaAZoCWgPQwhIT5FDxOtlQJSGlFKUaBVN6ANoFkdAl+J6VhTfi3V9lChoBmgJaA9DCIZyol0Fh2NAlIaUUpRoFU3oA2gWR0CX5d+PRzBAdX2UKGgGaAloD0MI7WZGPxr6X0CUhpRSlGgVTegDaBZHQJfpyuX/o7p1fZQoaAZoCWgPQwiokCv1LHxgQJSGlFKUaBVN6ANoFkdAl+ugpz90inV9lChoBmgJaA9DCLneNlMhQjFAlIaUUpRoFUvxaBZHQJfu1iYsunN1fZQoaAZoCWgPQwiXHeIfto9eQJSGlFKUaBVN6ANoFkdAl/G2NipeeHV9lChoBmgJaA9DCC8WhshpRWhAlIaUUpRoFU3oA2gWR0CX8d9If8uSdX2UKGgGaAloD0MI2nIuxdWKZ0CUhpRSlGgVTegDaBZHQJf2bMNc4YJ1fZQoaAZoCWgPQwiqnsw/+lBQQJSGlFKUaBVNKAFoFkdAl/nuLFXJYHV9lChoBmgJaA9DCEsjZvZ5WmRAlIaUUpRoFU3oA2gWR0CX+oICU5dXdX2UKGgGaAloD0MIwJSBA9ptYUCUhpRSlGgVTegDaBZHQJgB58WsRxt1fZQoaAZoCWgPQwjU0twKYXBgQJSGlFKUaBVN6ANoFkdAmA3P/BFd9nV9lChoBmgJaA9DCDKqDONu6mFAlIaUUpRoFU3oA2gWR0CYEaRISUTtdX2UKGgGaAloD0MI9Kj4vyNKW0CUhpRSlGgVTegDaBZHQJga4IJJGvx1fZQoaAZoCWgPQwjGGFjH8R9kQJSGlFKUaBVN6ANoFkdAmBuE3n6l+HV9lChoBmgJaA9DCFtfJLTlY2FAlIaUUpRoFU3oA2gWR0CYH3hFEy+IdX2UKGgGaAloD0MIdeRIZ2DNZUCUhpRSlGgVTegDaBZHQJgfwdeY2Kl1fZQoaAZoCWgPQwhsk4rG2jxiQJSGlFKUaBVN6ANoFkdAmB/4dELH/HV9lChoBmgJaA9DCODaiZIQTGVAlIaUUpRoFU3oA2gWR0CYNxDqGDcudX2UKGgGaAloD0MI5nXEIRsjWUCUhpRSlGgVTegDaBZHQJg8xHuqm0p1fZQoaAZoCWgPQwiy8WCL3edkQJSGlFKUaBVN6ANoFkdAmEAAIldC3XV9lChoBmgJaA9DCLyUumQctVpAlIaUUpRoFU3oA2gWR0CYQryFfzBidX2UKGgGaAloD0MImtL6W4IPZ0CUhpRSlGgVTegDaBZHQJhC5kc0cfh1fZQoaAZoCWgPQwhPIy2Vt/VZQJSGlFKUaBVN6ANoFkdAmEeAfuCwr3V9lChoBmgJaA9DCIaQ8/4/TWJAlIaUUpRoFU3oA2gWR0CYSxFI/Z/TdX2UKGgGaAloD0MIOiLfpVS3YECUhpRSlGgVTegDaBZHQJhLnT4L1Ep1fZQoaAZoCWgPQwg2k2+2udpdQJSGlFKUaBVN6ANoFkdAmFK9F4LThHV9lChoBmgJaA9DCIhJuJBHfkLAlIaUUpRoFUvzaBZHQJhU5Pdl/Yt1fZQoaAZoCWgPQwgkDtlAOv9hQJSGlFKUaBVN6ANoFkdAmFxrsF+uvHV9lChoBmgJaA9DCBtl/WZiCmVAlIaUUpRoFU3oA2gWR0CYXvA2ycCpdX2UKGgGaAloD0MIHVvPEI4AYkCUhpRSlGgVTegDaBZHQJhk1I9TxXp1fZQoaAZoCWgPQwipaoKoe5BgQJSGlFKUaBVN6ANoFkdAmGVj7hvR7nV9lChoBmgJaA9DCBRbQdMSk15AlIaUUpRoFU3oA2gWR0CYaTRQaaTfdX2UKGgGaAloD0MIHHi13BlmZkCUhpRSlGgVTegDaBZHQJhpekXUH6d1fZQoaAZoCWgPQwjMKmwGOMFiQJSGlFKUaBVN6ANoFkdAmGmx86V+qnV9lChoBmgJaA9DCP8iaMykaGNAlIaUUpRoFU3oA2gWR0CYgSa/RE4OdX2UKGgGaAloD0MITUusjEZsY0CUhpRSlGgVTegDaBZHQJiHqZ3LV4J1fZQoaAZoCWgPQwg+zF62nb9uQJSGlFKUaBVNXgJoFkdAmIgzLGJemnV9lChoBmgJaA9DCL9jeOznF2VAlIaUUpRoFU3oA2gWR0CYiy+8XenAdX2UKGgGaAloD0MIe4MvTKYmZUCUhpRSlGgVTegDaBZHQJiN6P7vXsh1fZQoaAZoCWgPQwh6Oey+45ZiQJSGlFKUaBVN6ANoFkdAmI4RigCfYnV9lChoBmgJaA9DCHgI46dx1mFAlIaUUpRoFU3oA2gWR0CYletIkJKKdX2UKGgGaAloD0MIQrPr3gq6ZUCUhpRSlGgVTegDaBZHQJiWdmapgkV1fZQoaAZoCWgPQwgUlnhA2dT/P5SGlFKUaBVL6WgWR0CYl49wm3OOdX2UKGgGaAloD0MID+85sJzuYkCUhpRSlGgVTegDaBZHQJifdcmjTKF1fZQoaAZoCWgPQwi13JkJBvliQJSGlFKUaBVN6ANoFkdAmKdt34bjtHV9lChoBmgJaA9DCM8xIHs9YWFAlIaUUpRoFU3oA2gWR0CYqhvsqrimdX2UKGgGaAloD0MIL9/6sN4YYECUhpRSlGgVTegDaBZHQJiwErOJLuh1fZQoaAZoCWgPQwijdyrgnixjQJSGlFKUaBVN6ANoFkdAmLCkJKJ2uHV9lChoBmgJaA9DCPPixFe7jGVAlIaUUpRoFU3oA2gWR0CYtEPMjeKsdX2UKGgGaAloD0MIhUIEHML1Y0CUhpRSlGgVTegDaBZHQJi0iHIp6Qh1fZQoaAZoCWgPQwhZMPFH0bdiQJSGlFKUaBVN6ANoFkdAmLS7yc0+DHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcf711da8898b643177a32fc09fb3d02f370b16d154f6036efdf9f94fad3c38f
3
+ size 147412
ppo_test/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo_test/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f49f06e9940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49f06e99d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49f06e9a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49f06e9af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f49f06e9b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f49f06e9c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f49f06e9ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49f06e9d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f49f06e9dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49f06e9e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49f06e9ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49f06e9f70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f49f06e3a20>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673623117227300818,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADJtx76jaFU/AR2yvjZYrL4aV2m+DSRnugAAAAAAAAAAZjRIPpApXz+udbc9QgOevga9tz3hQ4a9AAAAAAAAAACaXxo99rwoukf9xzvPTK84F6O0uzv/fLoAAIA/AACAP00mL72z4cc+NqjTvR18TL7tsQ29k4XcvAAAAAAAAAAAzXSlu1z3BbrtLtm7oJQLNWrcH7uWx320AACAPwAAgD8ATIs8uG6/uUYVG7zk/cO0SroXu6a+MTQAAIA/AACAPwAt5D17YLu6NSNwvSe3jTt2mDQ7VHmJvAAAAAAAAIA/s3mbPRTalrrALdS7K5CRNlDE5bqgGQK2AACAPwAAgD/NHKa6e0CKuiwMmbsr5zm29pcbO/94pDUAAIA/AACAPzOcCj1IyYq6iguxO/KmmzgEHyi7WKG6uQAAgD8AAIA/5rPDPejfyj5mP0q9GhBbvt/51LzOZIU8AAAAAAAAAACzICS9SKWQumc2Srmm8Zk1csoAu4vjBbUAAIA/AACAP6ZG/T3hiJ68wnqjPRcvVjyZVgq+EnsmPQAAAAAAAIA/Gp6IPUg7iLo5p485Ens6tqoaDTqiYqa4AACAPwAAgD9trAY+ONqIu27kk7ttQQA6bRTPvN5wtDoAAIA/AACAP00qOz5OQXg/aDQJPqQ/fL57VAg+6kw+vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIm3PwTOjMY0CUhpRSlIwBbJRN6AOMAXSUR0CXH9t8NQTFdX2UKGgGaAloD0MIMLyS5LkOHUCUhpRSlGgVTSsBaBZHQJchVcophF51fZQoaAZoCWgPQwgTukvirJFaQJSGlFKUaBVN6ANoFkdAlyUe4G2TgXV9lChoBmgJaA9DCBQF+kSehWFAlIaUUpRoFU3oA2gWR0CXJZNmlImPdX2UKGgGaAloD0MIMZqV7UPmYECUhpRSlGgVTegDaBZHQJco9WeYlY51fZQoaAZoCWgPQwj7srRTc8NjQJSGlFKUaBVN6ANoFkdAlykDfBN21XV9lChoBmgJaA9DCBWOIJViY2hAlIaUUpRoFU3oA2gWR0CXKiKwIMScdX2UKGgGaAloD0MINNjUedRaY0CUhpRSlGgVTegDaBZHQJcxuFdszl91fZQoaAZoCWgPQwhYAFMGDgNkQJSGlFKUaBVN6ANoFkdAl0eEtyxRmHV9lChoBmgJaA9DCCp0XmOXNGBAlIaUUpRoFU3oA2gWR0CXSBFfiPyTdX2UKGgGaAloD0MIOGbZk8AGRECUhpRSlGgVS/loFkdAl0hR//echHV9lChoBmgJaA9DCERq2sW04WNAlIaUUpRoFU3oA2gWR0CXSa04R28qdX2UKGgGaAloD0MITDeJQWBRYkCUhpRSlGgVTegDaBZHQJdNgdmxt551fZQoaAZoCWgPQwgxmSoYFcpkQJSGlFKUaBVN6ANoFkdAl02N2TxG2HV9lChoBmgJaA9DCAXeyafH6WNAlIaUUpRoFU3oA2gWR0CXWtiRW912dX2UKGgGaAloD0MIoKUr2EZVZkCUhpRSlGgVTegDaBZHQJdg46T4cm11fZQoaAZoCWgPQwjpnJ/iOHdbQJSGlFKUaBVN6ANoFkdAl2XxNucc2nV9lChoBmgJaA9DCHJsPUM45ldAlIaUUpRoFU3oA2gWR0CXbMfTCtRvdX2UKGgGaAloD0MI+IpuvSa8YUCUhpRSlGgVTegDaBZHQJduY2vStvJ1fZQoaAZoCWgPQwi62/XSlDhiQJSGlFKUaBVN6ANoFkdAl3JW4RVZLnV9lChoBmgJaA9DCKzJU1bTCWRAlIaUUpRoFU3oA2gWR0CXctnWrfcfdX2UKGgGaAloD0MIgsR29wAdZkCUhpRSlGgVTegDaBZHQJd2PZElVtJ1fZQoaAZoCWgPQwiLiGLyBq5hQJSGlFKUaBVN6ANoFkdAl3eHvUjLS3V9lChoBmgJaA9DCMaIRKFl/QrAlIaUUpRoFUvtaBZHQJd5rQOWjXZ1fZQoaAZoCWgPQwh6NUBpqM1gQJSGlFKUaBVN6ANoFkdAl39GMfigkHV9lChoBmgJaA9DCGnGouls7WNAlIaUUpRoFU3oA2gWR0CXlRbExZdOdX2UKGgGaAloD0MIUcHhBZH2YUCUhpRSlGgVTegDaBZHQJeVovL5h0B1fZQoaAZoCWgPQwilEMglDm5hQJSGlFKUaBVN6ANoFkdAl5XiwKSgXnV9lChoBmgJaA9DCKJESx5PHzdAlIaUUpRoFUv8aBZHQJeWFMYdhiN1fZQoaAZoCWgPQwiTHRuB+NNgQJSGlFKUaBVN6ANoFkdAl5cOX/o7m3V9lChoBmgJaA9DCOi+nNmuY2JAlIaUUpRoFU3oA2gWR0CXmlGnn+yadX2UKGgGaAloD0MIx7ji4qhcY0CUhpRSlGgVTegDaBZHQJeaXtfG+9J1fZQoaAZoCWgPQwgr2hznNuEmQJSGlFKUaBVL9mgWR0CXncxY7q6fdX2UKGgGaAloD0MI/aNv0jSVUECUhpRSlGgVS91oFkdAl596FM7EHnV9lChoBmgJaA9DCCy3tBqS1WZAlIaUUpRoFU3oA2gWR0CXpYl/6O5sdX2UKGgGaAloD0MIdQZGXtZUFECUhpRSlGgVS+BoFkdAl6W4/RmbsnV9lChoBmgJaA9DCN9sc2N69mFAlIaUUpRoFU3oA2gWR0CXqtTRYzSDdX2UKGgGaAloD0MIZRu4A3XCYUCUhpRSlGgVTegDaBZHQJevgCZF5Od1fZQoaAZoCWgPQwgOhc/WwRNlQJSGlFKUaBVN6ANoFkdAl7g2f5DZ13V9lChoBmgJaA9DCK2FWWhn/mZAlIaUUpRoFU3oA2gWR0CXvL3IuGsWdX2UKGgGaAloD0MIn6ut2F/xXkCUhpRSlGgVTegDaBZHQJe9U+7lJYl1fZQoaAZoCWgPQwjIe9XKBAJiQJSGlFKUaBVN6ANoFkdAl8KEWVNYbXV9lChoBmgJaA9DCCcW+Irut2RAlIaUUpRoFU3oA2gWR0CXxORwZOzqdX2UKGgGaAloD0MIOdTvwtbwQECUhpRSlGgVS+poFkdAl8pf0ulGgHV9lChoBmgJaA9DCJz51RwgAFBAlIaUUpRoFUv9aBZHQJfK6GHpKSR1fZQoaAZoCWgPQwiCPLt8az1iQJSGlFKUaBVN6ANoFkdAl86Qpe/pMnV9lChoBmgJaA9DCJkMx/MZD15AlIaUUpRoFU3oA2gWR0CXztM5wOvudX2UKGgGaAloD0MIFK+ytinsX0CUhpRSlGgVTegDaBZHQJfhXR/mT1V1fZQoaAZoCWgPQwhIT5FDxOtlQJSGlFKUaBVN6ANoFkdAl+J6VhTfi3V9lChoBmgJaA9DCIZyol0Fh2NAlIaUUpRoFU3oA2gWR0CX5d+PRzBAdX2UKGgGaAloD0MI7WZGPxr6X0CUhpRSlGgVTegDaBZHQJfpyuX/o7p1fZQoaAZoCWgPQwiokCv1LHxgQJSGlFKUaBVN6ANoFkdAl+ugpz90inV9lChoBmgJaA9DCLneNlMhQjFAlIaUUpRoFUvxaBZHQJfu1iYsunN1fZQoaAZoCWgPQwiXHeIfto9eQJSGlFKUaBVN6ANoFkdAl/G2NipeeHV9lChoBmgJaA9DCC8WhshpRWhAlIaUUpRoFU3oA2gWR0CX8d9If8uSdX2UKGgGaAloD0MI2nIuxdWKZ0CUhpRSlGgVTegDaBZHQJf2bMNc4YJ1fZQoaAZoCWgPQwiqnsw/+lBQQJSGlFKUaBVNKAFoFkdAl/nuLFXJYHV9lChoBmgJaA9DCEsjZvZ5WmRAlIaUUpRoFU3oA2gWR0CX+oICU5dXdX2UKGgGaAloD0MIwJSBA9ptYUCUhpRSlGgVTegDaBZHQJgB58WsRxt1fZQoaAZoCWgPQwjU0twKYXBgQJSGlFKUaBVN6ANoFkdAmA3P/BFd9nV9lChoBmgJaA9DCDKqDONu6mFAlIaUUpRoFU3oA2gWR0CYEaRISUTtdX2UKGgGaAloD0MI9Kj4vyNKW0CUhpRSlGgVTegDaBZHQJga4IJJGvx1fZQoaAZoCWgPQwjGGFjH8R9kQJSGlFKUaBVN6ANoFkdAmBuE3n6l+HV9lChoBmgJaA9DCFtfJLTlY2FAlIaUUpRoFU3oA2gWR0CYH3hFEy+IdX2UKGgGaAloD0MIdeRIZ2DNZUCUhpRSlGgVTegDaBZHQJgfwdeY2Kl1fZQoaAZoCWgPQwhsk4rG2jxiQJSGlFKUaBVN6ANoFkdAmB/4dELH/HV9lChoBmgJaA9DCODaiZIQTGVAlIaUUpRoFU3oA2gWR0CYNxDqGDcudX2UKGgGaAloD0MI5nXEIRsjWUCUhpRSlGgVTegDaBZHQJg8xHuqm0p1fZQoaAZoCWgPQwiy8WCL3edkQJSGlFKUaBVN6ANoFkdAmEAAIldC3XV9lChoBmgJaA9DCLyUumQctVpAlIaUUpRoFU3oA2gWR0CYQryFfzBidX2UKGgGaAloD0MImtL6W4IPZ0CUhpRSlGgVTegDaBZHQJhC5kc0cfh1fZQoaAZoCWgPQwhPIy2Vt/VZQJSGlFKUaBVN6ANoFkdAmEeAfuCwr3V9lChoBmgJaA9DCIaQ8/4/TWJAlIaUUpRoFU3oA2gWR0CYSxFI/Z/TdX2UKGgGaAloD0MIOiLfpVS3YECUhpRSlGgVTegDaBZHQJhLnT4L1Ep1fZQoaAZoCWgPQwg2k2+2udpdQJSGlFKUaBVN6ANoFkdAmFK9F4LThHV9lChoBmgJaA9DCIhJuJBHfkLAlIaUUpRoFUvzaBZHQJhU5Pdl/Yt1fZQoaAZoCWgPQwgkDtlAOv9hQJSGlFKUaBVN6ANoFkdAmFxrsF+uvHV9lChoBmgJaA9DCBtl/WZiCmVAlIaUUpRoFU3oA2gWR0CYXvA2ycCpdX2UKGgGaAloD0MIHVvPEI4AYkCUhpRSlGgVTegDaBZHQJhk1I9TxXp1fZQoaAZoCWgPQwipaoKoe5BgQJSGlFKUaBVN6ANoFkdAmGVj7hvR7nV9lChoBmgJaA9DCBRbQdMSk15AlIaUUpRoFU3oA2gWR0CYaTRQaaTfdX2UKGgGaAloD0MIHHi13BlmZkCUhpRSlGgVTegDaBZHQJhpekXUH6d1fZQoaAZoCWgPQwjMKmwGOMFiQJSGlFKUaBVN6ANoFkdAmGmx86V+qnV9lChoBmgJaA9DCP8iaMykaGNAlIaUUpRoFU3oA2gWR0CYgSa/RE4OdX2UKGgGaAloD0MITUusjEZsY0CUhpRSlGgVTegDaBZHQJiHqZ3LV4J1fZQoaAZoCWgPQwg+zF62nb9uQJSGlFKUaBVNXgJoFkdAmIgzLGJemnV9lChoBmgJaA9DCL9jeOznF2VAlIaUUpRoFU3oA2gWR0CYiy+8XenAdX2UKGgGaAloD0MIe4MvTKYmZUCUhpRSlGgVTegDaBZHQJiN6P7vXsh1fZQoaAZoCWgPQwh6Oey+45ZiQJSGlFKUaBVN6ANoFkdAmI4RigCfYnV9lChoBmgJaA9DCHgI46dx1mFAlIaUUpRoFU3oA2gWR0CYletIkJKKdX2UKGgGaAloD0MIQrPr3gq6ZUCUhpRSlGgVTegDaBZHQJiWdmapgkV1fZQoaAZoCWgPQwgUlnhA2dT/P5SGlFKUaBVL6WgWR0CYl49wm3OOdX2UKGgGaAloD0MID+85sJzuYkCUhpRSlGgVTegDaBZHQJifdcmjTKF1fZQoaAZoCWgPQwi13JkJBvliQJSGlFKUaBVN6ANoFkdAmKdt34bjtHV9lChoBmgJaA9DCM8xIHs9YWFAlIaUUpRoFU3oA2gWR0CYqhvsqrimdX2UKGgGaAloD0MIL9/6sN4YYECUhpRSlGgVTegDaBZHQJiwErOJLuh1fZQoaAZoCWgPQwijdyrgnixjQJSGlFKUaBVN6ANoFkdAmLCkJKJ2uHV9lChoBmgJaA9DCPPixFe7jGVAlIaUUpRoFU3oA2gWR0CYtEPMjeKsdX2UKGgGaAloD0MIhUIEHML1Y0CUhpRSlGgVTegDaBZHQJi0iHIp6Qh1fZQoaAZoCWgPQwhZMPFH0bdiQJSGlFKUaBVN6ANoFkdAmLS7yc0+DHVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo_test/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40ecf42135db87a0833ca0309789a19e1342f272706da60c67fdc985b609e8b6
3
+ size 87929
ppo_test/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1cc5da9c15cde58f9d1f603671ea60e96a3fc285575d69633d7082506317102
3
+ size 43393
ppo_test/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_test/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (253 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 193.02770420205496, "std_reward": 105.06775360426049, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-13T15:54:03.060220"}