model update
Browse files- README.md +15 -15
- classification.json +1 -1
- config.json +1 -1
- tokenizer_config.json +1 -1
README.md
CHANGED
@@ -113,10 +113,10 @@ model-index:
|
|
113 |
metrics:
|
114 |
- name: F1
|
115 |
type: f1
|
116 |
-
value:
|
117 |
- name: F1 (macro)
|
118 |
type: f1_macro
|
119 |
-
value:
|
120 |
- task:
|
121 |
name: Lexical Relation Classification (CogALexV)
|
122 |
type: classification
|
@@ -127,10 +127,10 @@ model-index:
|
|
127 |
metrics:
|
128 |
- name: F1
|
129 |
type: f1
|
130 |
-
value:
|
131 |
- name: F1 (macro)
|
132 |
type: f1_macro
|
133 |
-
value:
|
134 |
- task:
|
135 |
name: Lexical Relation Classification (EVALution)
|
136 |
type: classification
|
@@ -141,10 +141,10 @@ model-index:
|
|
141 |
metrics:
|
142 |
- name: F1
|
143 |
type: f1
|
144 |
-
value:
|
145 |
- name: F1 (macro)
|
146 |
type: f1_macro
|
147 |
-
value:
|
148 |
- task:
|
149 |
name: Lexical Relation Classification (K&H+N)
|
150 |
type: classification
|
@@ -155,10 +155,10 @@ model-index:
|
|
155 |
metrics:
|
156 |
- name: F1
|
157 |
type: f1
|
158 |
-
value:
|
159 |
- name: F1 (macro)
|
160 |
type: f1_macro
|
161 |
-
value:
|
162 |
- task:
|
163 |
name: Lexical Relation Classification (ROOT09)
|
164 |
type: classification
|
@@ -169,10 +169,10 @@ model-index:
|
|
169 |
metrics:
|
170 |
- name: F1
|
171 |
type: f1
|
172 |
-
value:
|
173 |
- name: F1 (macro)
|
174 |
type: f1_macro
|
175 |
-
value:
|
176 |
|
177 |
---
|
178 |
# relbert/relbert-roberta-large-nce-e-semeval2012
|
@@ -189,11 +189,11 @@ This model achieves the following results on the relation understanding tasks:
|
|
189 |
- Accuracy on ConceptNet Analogy: 0.3640939597315436
|
190 |
- Accuracy on T-Rex Analogy: 0.5846994535519126
|
191 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/classification.json)):
|
192 |
-
- Micro F1 score on BLESS:
|
193 |
-
- Micro F1 score on CogALexV:
|
194 |
-
- Micro F1 score on EVALution:
|
195 |
-
- Micro F1 score on K&H+N:
|
196 |
-
- Micro F1 score on ROOT09:
|
197 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/relation_mapping.json)):
|
198 |
- Accuracy on Relation Mapping: 0.8825793650793651
|
199 |
|
|
|
113 |
metrics:
|
114 |
- name: F1
|
115 |
type: f1
|
116 |
+
value: 0.9225553714027421
|
117 |
- name: F1 (macro)
|
118 |
type: f1_macro
|
119 |
+
value: 0.9197291498009345
|
120 |
- task:
|
121 |
name: Lexical Relation Classification (CogALexV)
|
122 |
type: classification
|
|
|
127 |
metrics:
|
128 |
- name: F1
|
129 |
type: f1
|
130 |
+
value: 0.8448356807511737
|
131 |
- name: F1 (macro)
|
132 |
type: f1_macro
|
133 |
+
value: 0.6748981211013405
|
134 |
- task:
|
135 |
name: Lexical Relation Classification (EVALution)
|
136 |
type: classification
|
|
|
141 |
metrics:
|
142 |
- name: F1
|
143 |
type: f1
|
144 |
+
value: 0.6847237269772481
|
145 |
- name: F1 (macro)
|
146 |
type: f1_macro
|
147 |
+
value: 0.6766012034119605
|
148 |
- task:
|
149 |
name: Lexical Relation Classification (K&H+N)
|
150 |
type: classification
|
|
|
155 |
metrics:
|
156 |
- name: F1
|
157 |
type: f1
|
158 |
+
value: 0.9536760102942199
|
159 |
- name: F1 (macro)
|
160 |
type: f1_macro
|
161 |
+
value: 0.8593518348956461
|
162 |
- task:
|
163 |
name: Lexical Relation Classification (ROOT09)
|
164 |
type: classification
|
|
|
169 |
metrics:
|
170 |
- name: F1
|
171 |
type: f1
|
172 |
+
value: 0.9072391099968662
|
173 |
- name: F1 (macro)
|
174 |
type: f1_macro
|
175 |
+
value: 0.9056105194658931
|
176 |
|
177 |
---
|
178 |
# relbert/relbert-roberta-large-nce-e-semeval2012
|
|
|
189 |
- Accuracy on ConceptNet Analogy: 0.3640939597315436
|
190 |
- Accuracy on T-Rex Analogy: 0.5846994535519126
|
191 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/classification.json)):
|
192 |
+
- Micro F1 score on BLESS: 0.9225553714027421
|
193 |
+
- Micro F1 score on CogALexV: 0.8448356807511737
|
194 |
+
- Micro F1 score on EVALution: 0.6847237269772481
|
195 |
+
- Micro F1 score on K&H+N: 0.9536760102942199
|
196 |
+
- Micro F1 score on ROOT09: 0.9072391099968662
|
197 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/relation_mapping.json)):
|
198 |
- Accuracy on Relation Mapping: 0.8825793650793651
|
199 |
|
classification.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.
|
|
|
1 |
+
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9225553714027422, "test/f1_macro": 0.9197291498009345, "test/f1_micro": 0.9225553714027421, "test/p_macro": 0.9150094905573273, "test/p_micro": 0.9225553714027422, "test/r_macro": 0.9255428117096391, "test/r_micro": 0.9225553714027422}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8448356807511737, "test/f1_macro": 0.6748981211013405, "test/f1_micro": 0.8448356807511737, "test/p_macro": 0.6910806285341508, "test/p_micro": 0.8448356807511737, "test/r_macro": 0.662819068684954, "test/r_micro": 0.8448356807511737}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6847237269772481, "test/f1_macro": 0.6766012034119605, "test/f1_micro": 0.6847237269772481, "test/p_macro": 0.6885422680797412, "test/p_micro": 0.6847237269772481, "test/r_macro": 0.6679318977886294, "test/r_micro": 0.6847237269772481}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9536760102942199, "test/f1_macro": 0.8593518348956461, "test/f1_micro": 0.9536760102942199, "test/p_macro": 0.8369706300928008, "test/p_micro": 0.9536760102942199, "test/r_macro": 0.8877934020457473, "test/r_micro": 0.9536760102942199}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9072391099968662, "test/f1_macro": 0.9056105194658931, "test/f1_micro": 0.9072391099968662, "test/p_macro": 0.9072040983082953, "test/p_micro": 0.9072391099968662, "test/r_macro": 0.9041836458174983, "test/r_micro": 0.9072391099968662}}
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "roberta-large",
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
tokenizer_config.json
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
-
"name_or_path": "
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": null,
|
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
+
"name_or_path": "roberta-large",
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": null,
|