asahi417 commited on
Commit
b7376a4
1 Parent(s): c980b65

model update

Browse files
Files changed (4) hide show
  1. README.md +15 -15
  2. classification.json +1 -1
  3. config.json +1 -1
  4. tokenizer_config.json +1 -1
README.md CHANGED
@@ -113,10 +113,10 @@ model-index:
113
  metrics:
114
  - name: F1
115
  type: f1
116
- value: None
117
  - name: F1 (macro)
118
  type: f1_macro
119
- value: None
120
  - task:
121
  name: Lexical Relation Classification (CogALexV)
122
  type: classification
@@ -127,10 +127,10 @@ model-index:
127
  metrics:
128
  - name: F1
129
  type: f1
130
- value: None
131
  - name: F1 (macro)
132
  type: f1_macro
133
- value: None
134
  - task:
135
  name: Lexical Relation Classification (EVALution)
136
  type: classification
@@ -141,10 +141,10 @@ model-index:
141
  metrics:
142
  - name: F1
143
  type: f1
144
- value: None
145
  - name: F1 (macro)
146
  type: f1_macro
147
- value: None
148
  - task:
149
  name: Lexical Relation Classification (K&H+N)
150
  type: classification
@@ -155,10 +155,10 @@ model-index:
155
  metrics:
156
  - name: F1
157
  type: f1
158
- value: None
159
  - name: F1 (macro)
160
  type: f1_macro
161
- value: None
162
  - task:
163
  name: Lexical Relation Classification (ROOT09)
164
  type: classification
@@ -169,10 +169,10 @@ model-index:
169
  metrics:
170
  - name: F1
171
  type: f1
172
- value: None
173
  - name: F1 (macro)
174
  type: f1_macro
175
- value: None
176
 
177
  ---
178
  # relbert/relbert-roberta-large-nce-e-semeval2012
@@ -189,11 +189,11 @@ This model achieves the following results on the relation understanding tasks:
189
  - Accuracy on ConceptNet Analogy: 0.3640939597315436
190
  - Accuracy on T-Rex Analogy: 0.5846994535519126
191
  - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/classification.json)):
192
- - Micro F1 score on BLESS: None
193
- - Micro F1 score on CogALexV: None
194
- - Micro F1 score on EVALution: None
195
- - Micro F1 score on K&H+N: None
196
- - Micro F1 score on ROOT09: None
197
  - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/relation_mapping.json)):
198
  - Accuracy on Relation Mapping: 0.8825793650793651
199
 
 
113
  metrics:
114
  - name: F1
115
  type: f1
116
+ value: 0.9225553714027421
117
  - name: F1 (macro)
118
  type: f1_macro
119
+ value: 0.9197291498009345
120
  - task:
121
  name: Lexical Relation Classification (CogALexV)
122
  type: classification
 
127
  metrics:
128
  - name: F1
129
  type: f1
130
+ value: 0.8448356807511737
131
  - name: F1 (macro)
132
  type: f1_macro
133
+ value: 0.6748981211013405
134
  - task:
135
  name: Lexical Relation Classification (EVALution)
136
  type: classification
 
141
  metrics:
142
  - name: F1
143
  type: f1
144
+ value: 0.6847237269772481
145
  - name: F1 (macro)
146
  type: f1_macro
147
+ value: 0.6766012034119605
148
  - task:
149
  name: Lexical Relation Classification (K&H+N)
150
  type: classification
 
155
  metrics:
156
  - name: F1
157
  type: f1
158
+ value: 0.9536760102942199
159
  - name: F1 (macro)
160
  type: f1_macro
161
+ value: 0.8593518348956461
162
  - task:
163
  name: Lexical Relation Classification (ROOT09)
164
  type: classification
 
169
  metrics:
170
  - name: F1
171
  type: f1
172
+ value: 0.9072391099968662
173
  - name: F1 (macro)
174
  type: f1_macro
175
+ value: 0.9056105194658931
176
 
177
  ---
178
  # relbert/relbert-roberta-large-nce-e-semeval2012
 
189
  - Accuracy on ConceptNet Analogy: 0.3640939597315436
190
  - Accuracy on T-Rex Analogy: 0.5846994535519126
191
  - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/classification.json)):
192
+ - Micro F1 score on BLESS: 0.9225553714027421
193
+ - Micro F1 score on CogALexV: 0.8448356807511737
194
+ - Micro F1 score on EVALution: 0.6847237269772481
195
+ - Micro F1 score on K&H+N: 0.9536760102942199
196
+ - Micro F1 score on ROOT09: 0.9072391099968662
197
  - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-e-semeval2012/raw/main/relation_mapping.json)):
198
  - Accuracy on Relation Mapping: 0.8825793650793651
199
 
classification.json CHANGED
@@ -1 +1 @@
1
- {"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.92240470091909, "test/f1_macro": 0.9188233632869808, "test/f1_micro": 0.92240470091909, "test/p_macro": 0.9183108289528753, "test/p_micro": 0.92240470091909, "test/r_macro": 0.9194352763902186, "test/r_micro": 0.92240470091909}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8546948356807512, "test/f1_macro": 0.6896373041346763, "test/f1_micro": 0.8546948356807512, "test/p_macro": 0.7148463319701758, "test/p_micro": 0.8546948356807512, "test/r_macro": 0.6700660518744752, "test/r_micro": 0.8546948356807512}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6863488624052004, "test/f1_macro": 0.6694518857409998, "test/f1_micro": 0.6863488624052004, "test/p_macro": 0.6819920226152291, "test/p_micro": 0.6863488624052004, "test/r_macro": 0.6672826960878729, "test/r_micro": 0.6863488624052004}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9589622313417264, "test/f1_macro": 0.8730986989284496, "test/f1_micro": 0.9589622313417264, "test/p_macro": 0.8707798136462076, "test/p_micro": 0.9589622313417264, "test/r_macro": 0.8755540260729457, "test/r_micro": 0.9589622313417264}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9138201190849263, "test/f1_macro": 0.9121911051636283, "test/f1_micro": 0.9138201190849262, "test/p_macro": 0.9121801667203941, "test/p_micro": 0.9138201190849263, "test/r_macro": 0.9122317099157158, "test/r_micro": 0.9138201190849263}}
 
1
+ {"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9225553714027422, "test/f1_macro": 0.9197291498009345, "test/f1_micro": 0.9225553714027421, "test/p_macro": 0.9150094905573273, "test/p_micro": 0.9225553714027422, "test/r_macro": 0.9255428117096391, "test/r_micro": 0.9225553714027422}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8448356807511737, "test/f1_macro": 0.6748981211013405, "test/f1_micro": 0.8448356807511737, "test/p_macro": 0.6910806285341508, "test/p_micro": 0.8448356807511737, "test/r_macro": 0.662819068684954, "test/r_micro": 0.8448356807511737}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6847237269772481, "test/f1_macro": 0.6766012034119605, "test/f1_micro": 0.6847237269772481, "test/p_macro": 0.6885422680797412, "test/p_micro": 0.6847237269772481, "test/r_macro": 0.6679318977886294, "test/r_micro": 0.6847237269772481}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9536760102942199, "test/f1_macro": 0.8593518348956461, "test/f1_micro": 0.9536760102942199, "test/p_macro": 0.8369706300928008, "test/p_micro": 0.9536760102942199, "test/r_macro": 0.8877934020457473, "test/r_micro": 0.9536760102942199}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9072391099968662, "test/f1_macro": 0.9056105194658931, "test/f1_micro": 0.9072391099968662, "test/p_macro": 0.9072040983082953, "test/p_micro": 0.9072391099968662, "test/r_macro": 0.9041836458174983, "test/r_micro": 0.9072391099968662}}
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "relbert_output/ckpt/nce_semeval2012/template-e/epoch_6",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "roberta-large",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
tokenizer_config.json CHANGED
@@ -6,7 +6,7 @@
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
- "name_or_path": "relbert_output/ckpt/nce_semeval2012/template-e/epoch_6",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,
 
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
+ "name_or_path": "roberta-large",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,