asahi417 commited on
Commit
229fa76
1 Parent(s): 9e77a1a

model update

Browse files
README.md CHANGED
@@ -14,7 +14,7 @@ model-index:
14
  metrics:
15
  - name: Accuracy
16
  type: accuracy
17
- value: 0.8043055555555555
18
  - task:
19
  name: Analogy Questions (SAT full)
20
  type: multiple-choice-qa
@@ -25,7 +25,7 @@ model-index:
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
- value: 0.6577540106951871
29
  - task:
30
  name: Analogy Questions (SAT)
31
  type: multiple-choice-qa
@@ -36,7 +36,7 @@ model-index:
36
  metrics:
37
  - name: Accuracy
38
  type: accuracy
39
- value: 0.6468842729970327
40
  - task:
41
  name: Analogy Questions (BATS)
42
  type: multiple-choice-qa
@@ -47,7 +47,7 @@ model-index:
47
  metrics:
48
  - name: Accuracy
49
  type: accuracy
50
- value: 0.7581989994441356
51
  - task:
52
  name: Analogy Questions (Google)
53
  type: multiple-choice-qa
@@ -58,7 +58,7 @@ model-index:
58
  metrics:
59
  - name: Accuracy
60
  type: accuracy
61
- value: 0.914
62
  - task:
63
  name: Analogy Questions (U2)
64
  type: multiple-choice-qa
@@ -69,7 +69,7 @@ model-index:
69
  metrics:
70
  - name: Accuracy
71
  type: accuracy
72
- value: 0.6228070175438597
73
  - task:
74
  name: Analogy Questions (U4)
75
  type: multiple-choice-qa
@@ -80,7 +80,7 @@ model-index:
80
  metrics:
81
  - name: Accuracy
82
  type: accuracy
83
- value: 0.6064814814814815
84
  - task:
85
  name: Analogy Questions (ConceptNet Analogy)
86
  type: multiple-choice-qa
@@ -91,7 +91,7 @@ model-index:
91
  metrics:
92
  - name: Accuracy
93
  type: accuracy
94
- value: 0.4437919463087248
95
  - task:
96
  name: Analogy Questions (TREX Analogy)
97
  type: multiple-choice-qa
@@ -102,7 +102,7 @@ model-index:
102
  metrics:
103
  - name: Accuracy
104
  type: accuracy
105
- value: 0.5956284153005464
106
  - task:
107
  name: Lexical Relation Classification (BLESS)
108
  type: classification
@@ -113,10 +113,10 @@ model-index:
113
  metrics:
114
  - name: F1
115
  type: f1
116
- value: 0.9139671538345638
117
  - name: F1 (macro)
118
  type: f1_macro
119
- value: 0.9086682025661691
120
  - task:
121
  name: Lexical Relation Classification (CogALexV)
122
  type: classification
@@ -127,10 +127,10 @@ model-index:
127
  metrics:
128
  - name: F1
129
  type: f1
130
- value: 0.8495305164319249
131
  - name: F1 (macro)
132
  type: f1_macro
133
- value: 0.6825854190585644
134
  - task:
135
  name: Lexical Relation Classification (EVALution)
136
  type: classification
@@ -141,10 +141,10 @@ model-index:
141
  metrics:
142
  - name: F1
143
  type: f1
144
- value: 0.6874322860238353
145
  - name: F1 (macro)
146
  type: f1_macro
147
- value: 0.6766038659960685
148
  - task:
149
  name: Lexical Relation Classification (K&H+N)
150
  type: classification
@@ -155,10 +155,10 @@ model-index:
155
  metrics:
156
  - name: F1
157
  type: f1
158
- value: 0.9489462335675036
159
  - name: F1 (macro)
160
  type: f1_macro
161
- value: 0.8595801390910651
162
  - task:
163
  name: Lexical Relation Classification (ROOT09)
164
  type: classification
@@ -169,10 +169,10 @@ model-index:
169
  metrics:
170
  - name: F1
171
  type: f1
172
- value: 0.9003447195236602
173
  - name: F1 (macro)
174
  type: f1_macro
175
- value: 0.8976445914777993
176
 
177
  ---
178
  # relbert/relbert-roberta-large-nce-a-semeval2012
@@ -180,22 +180,22 @@ model-index:
180
  RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
181
  This model achieves the following results on the relation understanding tasks:
182
  - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-a-semeval2012/raw/main/analogy.forward.json)):
183
- - Accuracy on SAT (full): 0.6577540106951871
184
- - Accuracy on SAT: 0.6468842729970327
185
- - Accuracy on BATS: 0.7581989994441356
186
- - Accuracy on U2: 0.6228070175438597
187
- - Accuracy on U4: 0.6064814814814815
188
- - Accuracy on Google: 0.914
189
- - Accuracy on ConceptNet Analogy: 0.4437919463087248
190
- - Accuracy on T-Rex Analogy: 0.5956284153005464
191
  - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-a-semeval2012/raw/main/classification.json)):
192
- - Micro F1 score on BLESS: 0.9139671538345638
193
- - Micro F1 score on CogALexV: 0.8495305164319249
194
- - Micro F1 score on EVALution: 0.6874322860238353
195
- - Micro F1 score on K&H+N: 0.9489462335675036
196
- - Micro F1 score on ROOT09: 0.9003447195236602
197
  - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-a-semeval2012/raw/main/relation_mapping.json)):
198
- - Accuracy on Relation Mapping: 0.8043055555555555
199
 
200
 
201
  ### Usage
 
14
  metrics:
15
  - name: Accuracy
16
  type: accuracy
17
+ value: 0.788234126984127
18
  - task:
19
  name: Analogy Questions (SAT full)
20
  type: multiple-choice-qa
 
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
+ value: 0.6684491978609626
29
  - task:
30
  name: Analogy Questions (SAT)
31
  type: multiple-choice-qa
 
36
  metrics:
37
  - name: Accuracy
38
  type: accuracy
39
+ value: 0.655786350148368
40
  - task:
41
  name: Analogy Questions (BATS)
42
  type: multiple-choice-qa
 
47
  metrics:
48
  - name: Accuracy
49
  type: accuracy
50
+ value: 0.7943301834352418
51
  - task:
52
  name: Analogy Questions (Google)
53
  type: multiple-choice-qa
 
58
  metrics:
59
  - name: Accuracy
60
  type: accuracy
61
+ value: 0.948
62
  - task:
63
  name: Analogy Questions (U2)
64
  type: multiple-choice-qa
 
69
  metrics:
70
  - name: Accuracy
71
  type: accuracy
72
+ value: 0.6140350877192983
73
  - task:
74
  name: Analogy Questions (U4)
75
  type: multiple-choice-qa
 
80
  metrics:
81
  - name: Accuracy
82
  type: accuracy
83
+ value: 0.6134259259259259
84
  - task:
85
  name: Analogy Questions (ConceptNet Analogy)
86
  type: multiple-choice-qa
 
91
  metrics:
92
  - name: Accuracy
93
  type: accuracy
94
+ value: 0.4463087248322148
95
  - task:
96
  name: Analogy Questions (TREX Analogy)
97
  type: multiple-choice-qa
 
102
  metrics:
103
  - name: Accuracy
104
  type: accuracy
105
+ value: 0.5901639344262295
106
  - task:
107
  name: Lexical Relation Classification (BLESS)
108
  type: classification
 
113
  metrics:
114
  - name: F1
115
  type: f1
116
+ value: 0.9162272110893476
117
  - name: F1 (macro)
118
  type: f1_macro
119
+ value: 0.9126691400768508
120
  - task:
121
  name: Lexical Relation Classification (CogALexV)
122
  type: classification
 
127
  metrics:
128
  - name: F1
129
  type: f1
130
+ value: 0.8532863849765259
131
  - name: F1 (macro)
132
  type: f1_macro
133
+ value: 0.6881964823343752
134
  - task:
135
  name: Lexical Relation Classification (EVALution)
136
  type: classification
 
141
  metrics:
142
  - name: F1
143
  type: f1
144
+ value: 0.6912242686890574
145
  - name: F1 (macro)
146
  type: f1_macro
147
+ value: 0.6779372223928826
148
  - task:
149
  name: Lexical Relation Classification (K&H+N)
150
  type: classification
 
155
  metrics:
156
  - name: F1
157
  type: f1
158
+ value: 0.9558322320372817
159
  - name: F1 (macro)
160
  type: f1_macro
161
+ value: 0.8723486583200801
162
  - task:
163
  name: Lexical Relation Classification (ROOT09)
164
  type: classification
 
169
  metrics:
170
  - name: F1
171
  type: f1
172
+ value: 0.898464431212786
173
  - name: F1 (macro)
174
  type: f1_macro
175
+ value: 0.8978368087670114
176
 
177
  ---
178
  # relbert/relbert-roberta-large-nce-a-semeval2012
 
180
  RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
181
  This model achieves the following results on the relation understanding tasks:
182
  - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-a-semeval2012/raw/main/analogy.forward.json)):
183
+ - Accuracy on SAT (full): 0.6684491978609626
184
+ - Accuracy on SAT: 0.655786350148368
185
+ - Accuracy on BATS: 0.7943301834352418
186
+ - Accuracy on U2: 0.6140350877192983
187
+ - Accuracy on U4: 0.6134259259259259
188
+ - Accuracy on Google: 0.948
189
+ - Accuracy on ConceptNet Analogy: 0.4463087248322148
190
+ - Accuracy on T-Rex Analogy: 0.5901639344262295
191
  - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-a-semeval2012/raw/main/classification.json)):
192
+ - Micro F1 score on BLESS: 0.9162272110893476
193
+ - Micro F1 score on CogALexV: 0.8532863849765259
194
+ - Micro F1 score on EVALution: 0.6912242686890574
195
+ - Micro F1 score on K&H+N: 0.9558322320372817
196
+ - Micro F1 score on ROOT09: 0.898464431212786
197
  - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-a-semeval2012/raw/main/relation_mapping.json)):
198
+ - Accuracy on Relation Mapping: 0.788234126984127
199
 
200
 
201
  ### Usage
analogy.bidirection.json CHANGED
@@ -1 +1 @@
1
- {"sat_full/test": 0.6711229946524064, "sat/test": 0.658753709198813, "u2/test": 0.6228070175438597, "u4/test": 0.6319444444444444, "google/test": 0.934, "bats/test": 0.7709838799332963, "t_rex_relational_similarity/test": 0.6284153005464481, "conceptnet_relational_similarity/test": 0.46308724832214765, "sat/validation": 0.7837837837837838, "u2/validation": 0.6666666666666666, "u4/validation": 0.6458333333333334, "google/validation": 0.98, "bats/validation": 0.8291457286432161, "semeval2012_relational_similarity/validation": 0.7088607594936709, "t_rex_relational_similarity/validation": 0.2560483870967742, "conceptnet_relational_similarity/validation": 0.368705035971223}
 
1
+ {"sat_full/test": 0.6711229946524064, "sat/test": 0.6646884272997032, "u2/test": 0.6228070175438597, "u4/test": 0.6550925925925926, "google/test": 0.962, "bats/test": 0.7904391328515842, "t_rex_relational_similarity/test": 0.6338797814207651, "conceptnet_relational_similarity/test": 0.4446308724832215, "sat/validation": 0.7297297297297297, "u2/validation": 0.6666666666666666, "u4/validation": 0.5833333333333334, "google/validation": 1.0, "bats/validation": 0.8391959798994975, "semeval2012_relational_similarity/validation": 0.7341772151898734, "t_rex_relational_similarity/validation": 0.2661290322580645, "conceptnet_relational_similarity/validation": 0.37949640287769787}
analogy.forward.json CHANGED
@@ -1 +1 @@
1
- {"semeval2012_relational_similarity/validation": 0.759493670886076, "sat_full/test": 0.6577540106951871, "sat/test": 0.6468842729970327, "u2/test": 0.6228070175438597, "u4/test": 0.6064814814814815, "google/test": 0.914, "bats/test": 0.7581989994441356, "t_rex_relational_similarity/test": 0.5956284153005464, "conceptnet_relational_similarity/test": 0.4437919463087248, "sat/validation": 0.7567567567567568, "u2/validation": 0.5833333333333334, "u4/validation": 0.5625, "google/validation": 0.98, "bats/validation": 0.8391959798994975, "t_rex_relational_similarity/validation": 0.22580645161290322, "conceptnet_relational_similarity/validation": 0.35251798561151076}
 
1
+ {"semeval2012_relational_similarity/validation": 0.7341772151898734, "sat_full/test": 0.6684491978609626, "sat/test": 0.655786350148368, "u2/test": 0.6140350877192983, "u4/test": 0.6134259259259259, "google/test": 0.948, "bats/test": 0.7943301834352418, "t_rex_relational_similarity/test": 0.5901639344262295, "conceptnet_relational_similarity/test": 0.4463087248322148, "sat/validation": 0.7837837837837838, "u2/validation": 0.5416666666666666, "u4/validation": 0.5416666666666666, "google/validation": 1.0, "bats/validation": 0.8492462311557789, "t_rex_relational_similarity/validation": 0.2620967741935484, "conceptnet_relational_similarity/validation": 0.39388489208633093}
analogy.reverse.json CHANGED
@@ -1 +1 @@
1
- {"sat_full/test": 0.6176470588235294, "sat/test": 0.6112759643916914, "u2/test": 0.6096491228070176, "u4/test": 0.5972222222222222, "google/test": 0.922, "bats/test": 0.7287381878821567, "t_rex_relational_similarity/test": 0.5956284153005464, "conceptnet_relational_similarity/test": 0.4085570469798658, "sat/validation": 0.6756756756756757, "u2/validation": 0.6666666666666666, "u4/validation": 0.5833333333333334, "google/validation": 0.96, "bats/validation": 0.7839195979899497, "semeval2012_relational_similarity/validation": 0.6962025316455697, "t_rex_relational_similarity/validation": 0.24596774193548387, "conceptnet_relational_similarity/validation": 0.31384892086330934}
 
1
+ {"sat_full/test": 0.6149732620320856, "sat/test": 0.6053412462908012, "u2/test": 0.6008771929824561, "u4/test": 0.6296296296296297, "google/test": 0.952, "bats/test": 0.7470817120622568, "t_rex_relational_similarity/test": 0.6229508196721312, "conceptnet_relational_similarity/test": 0.39932885906040266, "sat/validation": 0.7027027027027027, "u2/validation": 0.625, "u4/validation": 0.5833333333333334, "google/validation": 0.98, "bats/validation": 0.8140703517587939, "semeval2012_relational_similarity/validation": 0.6708860759493671, "t_rex_relational_similarity/validation": 0.25, "conceptnet_relational_similarity/validation": 0.3318345323741007}
classification.json CHANGED
@@ -1 +1 @@
1
- {"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9139671538345638, "test/f1_macro": 0.9086682025661691, "test/f1_micro": 0.9139671538345638, "test/p_macro": 0.9072703871807176, "test/p_micro": 0.9139671538345638, "test/r_macro": 0.9103957441016443, "test/r_micro": 0.9139671538345638}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8495305164319249, "test/f1_macro": 0.6825854190585644, "test/f1_micro": 0.8495305164319249, "test/p_macro": 0.713833404738869, "test/p_micro": 0.8495305164319249, "test/r_macro": 0.6582651578742065, "test/r_micro": 0.8495305164319249}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6874322860238353, "test/f1_macro": 0.6766038659960685, "test/f1_micro": 0.6874322860238353, "test/p_macro": 0.677756510883655, "test/p_micro": 0.6874322860238353, "test/r_macro": 0.6770380770682676, "test/r_micro": 0.6874322860238353}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9489462335675036, "test/f1_macro": 0.8595801390910651, "test/f1_micro": 0.9489462335675036, "test/p_macro": 0.8728913872732812, "test/p_micro": 0.9489462335675036, "test/r_macro": 0.8477758803228803, "test/r_micro": 0.9489462335675036}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9003447195236602, "test/f1_macro": 0.8976445914777993, "test/f1_micro": 0.9003447195236602, "test/p_macro": 0.9000751524652514, "test/p_micro": 0.9003447195236602, "test/r_macro": 0.8955420485369855, "test/r_micro": 0.9003447195236602}}
 
1
+ {"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9162272110893476, "test/f1_macro": 0.9126691400768508, "test/f1_micro": 0.9162272110893476, "test/p_macro": 0.9121763629267451, "test/p_micro": 0.9162272110893476, "test/r_macro": 0.9135529572876576, "test/r_micro": 0.9162272110893476}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8532863849765259, "test/f1_macro": 0.6881964823343752, "test/f1_micro": 0.8532863849765259, "test/p_macro": 0.7255568039986454, "test/p_micro": 0.8532863849765259, "test/r_macro": 0.6588623821958979, "test/r_micro": 0.8532863849765259}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6912242686890574, "test/f1_macro": 0.6779372223928826, "test/f1_micro": 0.6912242686890574, "test/p_macro": 0.6865626828233385, "test/p_micro": 0.6912242686890574, "test/r_macro": 0.6726722427005545, "test/r_micro": 0.6912242686890574}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9558322320372817, "test/f1_macro": 0.8723486583200801, "test/f1_micro": 0.9558322320372817, "test/p_macro": 0.9062745443993847, "test/p_micro": 0.9558322320372817, "test/r_macro": 0.846521674633046, "test/r_micro": 0.9558322320372817}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.898464431212786, "test/f1_macro": 0.8978368087670114, "test/f1_micro": 0.898464431212786, "test/p_macro": 0.895948162376852, "test/p_micro": 0.898464431212786, "test/r_macro": 0.8998170610834952, "test/r_micro": 0.898464431212786}}
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "relbert_output/ckpt/nce_semeval2012/template-a/epoch_8",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "roberta-large",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
relation_mapping.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -6,7 +6,7 @@
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
- "name_or_path": "relbert_output/ckpt/nce_semeval2012/template-a/epoch_8",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,
 
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
+ "name_or_path": "roberta-large",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,