model update
Browse files- README.md +236 -0
- analogy.json +1 -0
- classification.json +1 -0
- config.json +1 -1
- pytorch_model.bin +2 -2
- relation_mapping.json +1 -0
- tokenizer_config.json +1 -1
- trainer_config.json +1 -0
- validation_loss.json +1 -0
README.md
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- relbert/semeval2012_relational_similarity_v6
|
4 |
+
model-index:
|
5 |
+
- name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-0-child-prototypical
|
6 |
+
results:
|
7 |
+
- task:
|
8 |
+
name: Relation Mapping
|
9 |
+
type: sorting-task
|
10 |
+
dataset:
|
11 |
+
name: Relation Mapping
|
12 |
+
args: relbert/relation_mapping
|
13 |
+
type: relation-mapping
|
14 |
+
metrics:
|
15 |
+
- name: Accuracy
|
16 |
+
type: accuracy
|
17 |
+
value: 0.38442460317460314
|
18 |
+
- task:
|
19 |
+
name: Analogy Questions (SAT full)
|
20 |
+
type: multiple-choice-qa
|
21 |
+
dataset:
|
22 |
+
name: SAT full
|
23 |
+
args: relbert/analogy_questions
|
24 |
+
type: analogy-questions
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value: 0.23529411764705882
|
29 |
+
- task:
|
30 |
+
name: Analogy Questions (SAT)
|
31 |
+
type: multiple-choice-qa
|
32 |
+
dataset:
|
33 |
+
name: SAT
|
34 |
+
args: relbert/analogy_questions
|
35 |
+
type: analogy-questions
|
36 |
+
metrics:
|
37 |
+
- name: Accuracy
|
38 |
+
type: accuracy
|
39 |
+
value: 0.2314540059347181
|
40 |
+
- task:
|
41 |
+
name: Analogy Questions (BATS)
|
42 |
+
type: multiple-choice-qa
|
43 |
+
dataset:
|
44 |
+
name: BATS
|
45 |
+
args: relbert/analogy_questions
|
46 |
+
type: analogy-questions
|
47 |
+
metrics:
|
48 |
+
- name: Accuracy
|
49 |
+
type: accuracy
|
50 |
+
value: 0.3229571984435798
|
51 |
+
- task:
|
52 |
+
name: Analogy Questions (Google)
|
53 |
+
type: multiple-choice-qa
|
54 |
+
dataset:
|
55 |
+
name: Google
|
56 |
+
args: relbert/analogy_questions
|
57 |
+
type: analogy-questions
|
58 |
+
metrics:
|
59 |
+
- name: Accuracy
|
60 |
+
type: accuracy
|
61 |
+
value: 0.384
|
62 |
+
- task:
|
63 |
+
name: Analogy Questions (U2)
|
64 |
+
type: multiple-choice-qa
|
65 |
+
dataset:
|
66 |
+
name: U2
|
67 |
+
args: relbert/analogy_questions
|
68 |
+
type: analogy-questions
|
69 |
+
metrics:
|
70 |
+
- name: Accuracy
|
71 |
+
type: accuracy
|
72 |
+
value: 0.3157894736842105
|
73 |
+
- task:
|
74 |
+
name: Analogy Questions (U4)
|
75 |
+
type: multiple-choice-qa
|
76 |
+
dataset:
|
77 |
+
name: U4
|
78 |
+
args: relbert/analogy_questions
|
79 |
+
type: analogy-questions
|
80 |
+
metrics:
|
81 |
+
- name: Accuracy
|
82 |
+
type: accuracy
|
83 |
+
value: 0.2847222222222222
|
84 |
+
- task:
|
85 |
+
name: Lexical Relation Classification (BLESS)
|
86 |
+
type: classification
|
87 |
+
dataset:
|
88 |
+
name: BLESS
|
89 |
+
args: relbert/lexical_relation_classification
|
90 |
+
type: relation-classification
|
91 |
+
metrics:
|
92 |
+
- name: F1
|
93 |
+
type: f1
|
94 |
+
value: 0.6522525237306012
|
95 |
+
- name: F1 (macro)
|
96 |
+
type: f1_macro
|
97 |
+
value: 0.616560269476982
|
98 |
+
- task:
|
99 |
+
name: Lexical Relation Classification (CogALexV)
|
100 |
+
type: classification
|
101 |
+
dataset:
|
102 |
+
name: CogALexV
|
103 |
+
args: relbert/lexical_relation_classification
|
104 |
+
type: relation-classification
|
105 |
+
metrics:
|
106 |
+
- name: F1
|
107 |
+
type: f1
|
108 |
+
value: 0.7183098591549296
|
109 |
+
- name: F1 (macro)
|
110 |
+
type: f1_macro
|
111 |
+
value: 0.16833503884438658
|
112 |
+
- task:
|
113 |
+
name: Lexical Relation Classification (EVALution)
|
114 |
+
type: classification
|
115 |
+
dataset:
|
116 |
+
name: BLESS
|
117 |
+
args: relbert/lexical_relation_classification
|
118 |
+
type: relation-classification
|
119 |
+
metrics:
|
120 |
+
- name: F1
|
121 |
+
type: f1
|
122 |
+
value: 0.42632719393282775
|
123 |
+
- name: F1 (macro)
|
124 |
+
type: f1_macro
|
125 |
+
value: 0.28678399596569476
|
126 |
+
- task:
|
127 |
+
name: Lexical Relation Classification (K&H+N)
|
128 |
+
type: classification
|
129 |
+
dataset:
|
130 |
+
name: K&H+N
|
131 |
+
args: relbert/lexical_relation_classification
|
132 |
+
type: relation-classification
|
133 |
+
metrics:
|
134 |
+
- name: F1
|
135 |
+
type: f1
|
136 |
+
value: 0.8141475968560896
|
137 |
+
- name: F1 (macro)
|
138 |
+
type: f1_macro
|
139 |
+
value: 0.6286243048790003
|
140 |
+
- task:
|
141 |
+
name: Lexical Relation Classification (ROOT09)
|
142 |
+
type: classification
|
143 |
+
dataset:
|
144 |
+
name: ROOT09
|
145 |
+
args: relbert/lexical_relation_classification
|
146 |
+
type: relation-classification
|
147 |
+
metrics:
|
148 |
+
- name: F1
|
149 |
+
type: f1
|
150 |
+
value: 0.6552804763397054
|
151 |
+
- name: F1 (macro)
|
152 |
+
type: f1_macro
|
153 |
+
value: 0.5562839421136045
|
154 |
+
|
155 |
+
---
|
156 |
+
# relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-0-child-prototypical
|
157 |
+
|
158 |
+
RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on
|
159 |
+
[relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6).
|
160 |
+
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
|
161 |
+
It achieves the following results on the relation understanding tasks:
|
162 |
+
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-0-child-prototypical/raw/main/analogy.json)):
|
163 |
+
- Accuracy on SAT (full): 0.23529411764705882
|
164 |
+
- Accuracy on SAT: 0.2314540059347181
|
165 |
+
- Accuracy on BATS: 0.3229571984435798
|
166 |
+
- Accuracy on U2: 0.3157894736842105
|
167 |
+
- Accuracy on U4: 0.2847222222222222
|
168 |
+
- Accuracy on Google: 0.384
|
169 |
+
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-0-child-prototypical/raw/main/classification.json)):
|
170 |
+
- Micro F1 score on BLESS: 0.6522525237306012
|
171 |
+
- Micro F1 score on CogALexV: 0.7183098591549296
|
172 |
+
- Micro F1 score on EVALution: 0.42632719393282775
|
173 |
+
- Micro F1 score on K&H+N: 0.8141475968560896
|
174 |
+
- Micro F1 score on ROOT09: 0.6552804763397054
|
175 |
+
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-0-child-prototypical/raw/main/relation_mapping.json)):
|
176 |
+
- Accuracy on Relation Mapping: 0.38442460317460314
|
177 |
+
|
178 |
+
|
179 |
+
### Usage
|
180 |
+
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
|
181 |
+
```shell
|
182 |
+
pip install relbert
|
183 |
+
```
|
184 |
+
and activate model as below.
|
185 |
+
```python
|
186 |
+
from relbert import RelBERT
|
187 |
+
model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-0-child-prototypical")
|
188 |
+
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
|
189 |
+
```
|
190 |
+
|
191 |
+
### Training hyperparameters
|
192 |
+
|
193 |
+
The following hyperparameters were used during training:
|
194 |
+
- model: roberta-base
|
195 |
+
- max_length: 64
|
196 |
+
- mode: mask
|
197 |
+
- data: relbert/semeval2012_relational_similarity_v6
|
198 |
+
- split: train
|
199 |
+
- split_eval: validation
|
200 |
+
- template_mode: manual
|
201 |
+
- loss_function: triplet
|
202 |
+
- classification_loss: False
|
203 |
+
- temperature_nce_constant: 0.05
|
204 |
+
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
|
205 |
+
- epoch: 2
|
206 |
+
- batch: 128
|
207 |
+
- lr: 5e-06
|
208 |
+
- lr_decay: False
|
209 |
+
- lr_warmup: 1
|
210 |
+
- weight_decay: 0
|
211 |
+
- random_seed: 0
|
212 |
+
- exclude_relation: None
|
213 |
+
- n_sample: 320
|
214 |
+
- gradient_accumulation: 8
|
215 |
+
- relation_level: None
|
216 |
+
- data_level: child_prototypical
|
217 |
+
|
218 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-0-child-prototypical/raw/main/trainer_config.json).
|
219 |
+
|
220 |
+
### Reference
|
221 |
+
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
222 |
+
|
223 |
+
```
|
224 |
+
|
225 |
+
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
|
226 |
+
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
|
227 |
+
author = "Ushio, Asahi and
|
228 |
+
Schockaert, Steven and
|
229 |
+
Camacho-Collados, Jose",
|
230 |
+
booktitle = "EMNLP 2021",
|
231 |
+
year = "2021",
|
232 |
+
address = "Online",
|
233 |
+
publisher = "Association for Computational Linguistics",
|
234 |
+
}
|
235 |
+
|
236 |
+
```
|
analogy.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"distance_function": "cosine_similarity", "sat/test": 0.2314540059347181, "sat/valid": 0.2702702702702703, "u2/test": 0.3157894736842105, "u2/valid": 0.2916666666666667, "u4/test": 0.2847222222222222, "u4/valid": 0.2708333333333333, "google/test": 0.384, "google/valid": 0.46, "bats/test": 0.3229571984435798, "bats/valid": 0.2864321608040201, "sat_full": 0.23529411764705882}
|
classification.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6522525237306012, "test/f1_macro": 0.616560269476982, "test/f1_micro": 0.6522525237306012, "test/p_macro": 0.6327396676541002, "test/p_micro": 0.6522525237306012, "test/r_macro": 0.6389545655489762, "test/r_micro": 0.6522525237306012}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.7183098591549296, "test/f1_macro": 0.16833503884438658, "test/f1_micro": 0.7183098591549296, "test/p_macro": 0.34368248003757634, "test/p_micro": 0.7183098591549296, "test/r_macro": 0.20055555555555554, "test/r_micro": 0.7183098591549296}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.42632719393282775, "test/f1_macro": 0.28678399596569476, "test/f1_micro": 0.42632719393282775, "test/p_macro": 0.35191649016357834, "test/p_micro": 0.42632719393282775, "test/r_macro": 0.3066647799615754, "test/r_micro": 0.42632719393282775}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8141475968560896, "test/f1_macro": 0.6286243048790003, "test/f1_micro": 0.8141475968560896, "test/p_macro": 0.7020667520537744, "test/p_micro": 0.8141475968560896, "test/r_macro": 0.61205810359152, "test/r_micro": 0.8141475968560896}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6552804763397054, "test/f1_macro": 0.5562839421136045, "test/f1_micro": 0.6552804763397054, "test/p_macro": 0.6480151680720655, "test/p_micro": 0.6552804763397054, "test/r_macro": 0.6060111247216715, "test/r_micro": 0.6552804763397054}}
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "roberta-base",
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:154713fa137cb32dd874bece3026ee1107c531b7e2c8a76e8e0f771f991bda3d
|
3 |
+
size 498652017
|
relation_mapping.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"accuracy": 0.38442460317460314, "prediction": [{"source": ["solar system", "sun", "planet", "mass", "attracts", "revolves", "gravity"], "true": ["atom", "nucleus", "electron", "charge", "attracts", "revolves", "electromagnetism"], "pred": ["electromagnetism", "charge", "electron", "nucleus", "attracts", "revolves", "atom"], "alignment_match": false, "accuracy": 0.42857142857142855, "similarity": 0.9998986814135402, "similarity_true": 0.9997957960954895}, {"source": ["water", "flows", "pressure", "water tower", "bucket", "filling", "emptying", "hydrodynamics"], "true": ["heat", "transfers", "temperature", "burner", "kettle", "heating", "cooling", "thermodynamics"], "pred": ["kettle", "cooling", "burner", "temperature", "transfers", "heating", "heat", "thermodynamics"], "alignment_match": false, "accuracy": 0.25, "similarity": 0.9998519345291734, "similarity_true": 0.9998062446897042}, {"source": ["waves", "shore", "reflects", "water", "breakwater", "rough", "calm", "crashing"], "true": ["sounds", "wall", "echoes", "air", "insulation", "loud", "quiet", "vibrating"], "pred": ["echoes", "quiet", "sounds", "air", "vibrating", "loud", "wall", "insulation"], "alignment_match": false, "accuracy": 0.25, "similarity": 0.9998885003248263, "similarity_true": 0.9997877377317981}, {"source": ["combustion", "fire", "fuel", "burning", "hot", "intense", "oxygen", "carbon dioxide"], "true": ["respiration", "animal", "food", "breathing", "living", "vigorous", "oxygen", "carbon dioxide"], "pred": ["vigorous", "animal", "food", "respiration", "breathing", "living", "oxygen", "carbon dioxide"], "alignment_match": false, "accuracy": 0.5, "similarity": 0.9999402877737723, "similarity_true": 0.9999207848671514}, {"source": ["sound", "low", "high", "echoes", "loud", "quiet", "horn"], "true": ["light", "red", "violet", "reflects", "bright", "dim", "lens"], "pred": ["dim", "red", "bright", "reflects", "violet", "light", "lens"], "alignment_match": false, "accuracy": 0.42857142857142855, "similarity": 0.9998792088171351, "similarity_true": 0.9998470043107288}, {"source": ["projectile", "trajectory", "earth", "parabolic", "air", "gravity", "attracts"], "true": ["planet", "orbit", "sun", "elliptical", "space", "gravity", "attracts"], "pred": ["orbit", "space", "planet", "elliptical", "sun", "gravity", "attracts"], "alignment_match": false, "accuracy": 0.42857142857142855, "similarity": 0.9999535285107376, "similarity_true": 0.9999353786494936}, {"source": ["breeds", "selection", "conformance", "artificial", "popularity", "breeding", "domesticated"], "true": ["species", "competition", "adaptation", "natural", "fitness", "mating", "wild"], "pred": ["species", "adaptation", "mating", "natural", "competition", "fitness", "wild"], "alignment_match": false, "accuracy": 0.42857142857142855, "similarity": 0.9999052091684724, "similarity_true": 0.9998966181588057}, {"source": ["ball", "billiards", "speed", "table", "bouncing", "moving", "slow", "fast"], "true": ["molecules", "gas", "temperature", "container", "pressing", "moving", "cold", "hot"], "pred": ["gas", "molecules", "temperature", "container", "pressing", "moving", "cold", "hot"], "alignment_match": false, "accuracy": 0.75, "similarity": 0.999871883343893, "similarity_true": 0.999866935281706}, {"source": ["computer", "processing", "erasing", "write", "read", "memory", "outputs", "inputs", "bug"], "true": ["mind", "thinking", "forgetting", "memorize", "remember", "memory", "muscles", "senses", "mistake"], "pred": ["mistake", "muscles", "thinking", "remember", "memorize", "memory", "senses", "forgetting", "mind"], "alignment_match": false, "accuracy": 0.1111111111111111, "similarity": 0.9998649963141523, "similarity_true": 0.9998444501292136}, {"source": ["slot machines", "reels", "spinning", "winning", "losing"], "true": ["bacteria", "genes", "mutating", "reproducing", "dying"], "pred": ["genes", "mutating", "bacteria", "reproducing", "dying"], "alignment_match": false, "accuracy": 0.4, "similarity": 0.9998052683496003, "similarity_true": 0.9997359221067951}, {"source": ["war", "soldier", "destroy", "fighting", "defeat", "attacks", "weapon"], "true": ["argument", "debater", "refute", "arguing", "acceptance", "criticizes", "logic"], "pred": ["logic", "debater", "criticizes", "arguing", "argument", "refute", "acceptance"], "alignment_match": false, "accuracy": 0.2857142857142857, "similarity": 0.9998387431318707, "similarity_true": 0.9998022495196359}, {"source": ["buyer", "merchandise", "buying", "selling", "returning", "valuable", "worthless"], "true": ["believer", "belief", "accepting", "advocating", "rejecting", "true", "false"], "pred": ["accepting", "believer", "belief", "rejecting", "true", "advocating", "false"], "alignment_match": false, "accuracy": 0.14285714285714285, "similarity": 0.9998433640713058, "similarity_true": 0.9997948803161422}, {"source": ["foundations", "buildings", "supporting", "solid", "weak", "crack"], "true": ["reasons", "theories", "confirming", "rational", "dubious", "flaw"], "pred": ["dubious", "theories", "reasons", "confirming", "flaw", "rational"], "alignment_match": false, "accuracy": 0.16666666666666666, "similarity": 0.9998684254009585, "similarity_true": 0.9998656516970459}, {"source": ["obstructions", "destination", "route", "traveller", "traveling", "companion", "arriving"], "true": ["difficulties", "goal", "plan", "person", "problem solving", "partner", "succeeding"], "pred": ["problem solving", "partner", "goal", "difficulties", "plan", "person", "succeeding"], "alignment_match": false, "accuracy": 0.14285714285714285, "similarity": 0.9998998083983347, "similarity_true": 0.9998575675062743}, {"source": ["money", "allocate", "budget", "effective", "cheap", "expansive"], "true": ["time", "invest", "schedule", "efficient", "quick", "slow"], "pred": ["time", "invest", "schedule", "quick", "slow", "efficient"], "alignment_match": false, "accuracy": 0.5, "similarity": 0.9999222406788741, "similarity_true": 0.9999181486897804}, {"source": ["seeds", "planted", "fruitful", "fruit", "grow", "wither", "blossom"], "true": ["ideas", "inspired", "productive", "product", "develop", "fail", "succeed"], "pred": ["succeed", "ideas", "productive", "product", "develop", "fail", "inspired"], "alignment_match": false, "accuracy": 0.5714285714285714, "similarity": 0.9998159316449768, "similarity_true": 0.9997895832756956}, {"source": ["machine", "working", "turned on", "turned off", "broken", "power", "repair"], "true": ["mind", "thinking", "awake", "asleep", "confused", "intelligence", "therapy"], "pred": ["intelligence", "thinking", "therapy", "asleep", "confused", "mind", "awake"], "alignment_match": false, "accuracy": 0.42857142857142855, "similarity": 0.9998155176793945, "similarity_true": 0.9997618964902606}, {"source": ["object", "hold", "weight", "heavy", "light"], "true": ["idea", "understand", "analyze", "important", "trivial"], "pred": ["idea", "analyze", "understand", "important", "trivial"], "alignment_match": false, "accuracy": 0.6, "similarity": 0.9997860629398051, "similarity_true": 0.999775265453976}, {"source": ["follow", "leader", "path", "follower", "lost", "wanders", "twisted", "straight"], "true": ["understand", "speaker", "argument", "listener", "misunderstood", "digresses", "complicated", "simple"], "pred": ["simple", "listener", "understand", "speaker", "misunderstood", "digresses", "complicated", "argument"], "alignment_match": false, "accuracy": 0.375, "similarity": 0.9998561435912088, "similarity_true": 0.9998356567540803}, {"source": ["seeing", "light", "illuminating", "darkness", "view", "hidden"], "true": ["understanding", "knowledge", "explaining", "confusion", "interpretation", "secret"], "pred": ["understanding", "confusion", "explaining", "secret", "interpretation", "knowledge"], "alignment_match": false, "accuracy": 0.5, "similarity": 0.9998257714200894, "similarity_true": 0.9997823601002886}]}
|
tokenizer_config.json
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
-
"name_or_path": "
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": null,
|
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
+
"name_or_path": "roberta-base",
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": null,
|
trainer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model": "roberta-base", "max_length": 64, "mode": "mask", "data": "relbert/semeval2012_relational_similarity_v6", "split": "train", "split_eval": "validation", "template_mode": "manual", "template": "I wasn\u2019t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>\u2019s <mask>", "loss_function": "triplet", "classification_loss": false, "temperature_nce_constant": 0.05, "temperature_nce_rank": {"min": 0.01, "max": 0.05, "type": "linear"}, "epoch": 2, "batch": 128, "lr": 5e-06, "lr_decay": false, "lr_warmup": 1, "weight_decay": 0, "random_seed": 0, "exclude_relation": null, "n_sample": 320, "gradient_accumulation": 8, "relation_level": null, "data_level": "child_prototypical"}
|
validation_loss.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"split": "validation", "loss": 0.9499067174906018, "data": "relbert/semeval2012_relational_similarity_v6", "exclude_relation": null, "relation_level": null, "level": "child_prototypical"}
|