model update
Browse files- README.md +236 -0
- analogy.json +1 -0
- classification.json +1 -0
- config.json +1 -1
- pytorch_model.bin +2 -2
- relation_mapping.json +1 -0
- tokenizer_config.json +1 -1
- trainer_config.json +1 -0
- validation_loss.json +1 -0
README.md
ADDED
|
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- relbert/semeval2012_relational_similarity_v6
|
| 4 |
+
model-index:
|
| 5 |
+
- name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1-child
|
| 6 |
+
results:
|
| 7 |
+
- task:
|
| 8 |
+
name: Relation Mapping
|
| 9 |
+
type: sorting-task
|
| 10 |
+
dataset:
|
| 11 |
+
name: Relation Mapping
|
| 12 |
+
args: relbert/relation_mapping
|
| 13 |
+
type: relation-mapping
|
| 14 |
+
metrics:
|
| 15 |
+
- name: Accuracy
|
| 16 |
+
type: accuracy
|
| 17 |
+
value: 0.8001190476190476
|
| 18 |
+
- task:
|
| 19 |
+
name: Analogy Questions (SAT full)
|
| 20 |
+
type: multiple-choice-qa
|
| 21 |
+
dataset:
|
| 22 |
+
name: SAT full
|
| 23 |
+
args: relbert/analogy_questions
|
| 24 |
+
type: analogy-questions
|
| 25 |
+
metrics:
|
| 26 |
+
- name: Accuracy
|
| 27 |
+
type: accuracy
|
| 28 |
+
value: 0.4385026737967914
|
| 29 |
+
- task:
|
| 30 |
+
name: Analogy Questions (SAT)
|
| 31 |
+
type: multiple-choice-qa
|
| 32 |
+
dataset:
|
| 33 |
+
name: SAT
|
| 34 |
+
args: relbert/analogy_questions
|
| 35 |
+
type: analogy-questions
|
| 36 |
+
metrics:
|
| 37 |
+
- name: Accuracy
|
| 38 |
+
type: accuracy
|
| 39 |
+
value: 0.4362017804154303
|
| 40 |
+
- task:
|
| 41 |
+
name: Analogy Questions (BATS)
|
| 42 |
+
type: multiple-choice-qa
|
| 43 |
+
dataset:
|
| 44 |
+
name: BATS
|
| 45 |
+
args: relbert/analogy_questions
|
| 46 |
+
type: analogy-questions
|
| 47 |
+
metrics:
|
| 48 |
+
- name: Accuracy
|
| 49 |
+
type: accuracy
|
| 50 |
+
value: 0.5786548082267927
|
| 51 |
+
- task:
|
| 52 |
+
name: Analogy Questions (Google)
|
| 53 |
+
type: multiple-choice-qa
|
| 54 |
+
dataset:
|
| 55 |
+
name: Google
|
| 56 |
+
args: relbert/analogy_questions
|
| 57 |
+
type: analogy-questions
|
| 58 |
+
metrics:
|
| 59 |
+
- name: Accuracy
|
| 60 |
+
type: accuracy
|
| 61 |
+
value: 0.802
|
| 62 |
+
- task:
|
| 63 |
+
name: Analogy Questions (U2)
|
| 64 |
+
type: multiple-choice-qa
|
| 65 |
+
dataset:
|
| 66 |
+
name: U2
|
| 67 |
+
args: relbert/analogy_questions
|
| 68 |
+
type: analogy-questions
|
| 69 |
+
metrics:
|
| 70 |
+
- name: Accuracy
|
| 71 |
+
type: accuracy
|
| 72 |
+
value: 0.41228070175438597
|
| 73 |
+
- task:
|
| 74 |
+
name: Analogy Questions (U4)
|
| 75 |
+
type: multiple-choice-qa
|
| 76 |
+
dataset:
|
| 77 |
+
name: U4
|
| 78 |
+
args: relbert/analogy_questions
|
| 79 |
+
type: analogy-questions
|
| 80 |
+
metrics:
|
| 81 |
+
- name: Accuracy
|
| 82 |
+
type: accuracy
|
| 83 |
+
value: 0.4074074074074074
|
| 84 |
+
- task:
|
| 85 |
+
name: Lexical Relation Classification (BLESS)
|
| 86 |
+
type: classification
|
| 87 |
+
dataset:
|
| 88 |
+
name: BLESS
|
| 89 |
+
args: relbert/lexical_relation_classification
|
| 90 |
+
type: relation-classification
|
| 91 |
+
metrics:
|
| 92 |
+
- name: F1
|
| 93 |
+
type: f1
|
| 94 |
+
value: 0.9026668675606448
|
| 95 |
+
- name: F1 (macro)
|
| 96 |
+
type: f1_macro
|
| 97 |
+
value: 0.894134460103921
|
| 98 |
+
- task:
|
| 99 |
+
name: Lexical Relation Classification (CogALexV)
|
| 100 |
+
type: classification
|
| 101 |
+
dataset:
|
| 102 |
+
name: CogALexV
|
| 103 |
+
args: relbert/lexical_relation_classification
|
| 104 |
+
type: relation-classification
|
| 105 |
+
metrics:
|
| 106 |
+
- name: F1
|
| 107 |
+
type: f1
|
| 108 |
+
value: 0.8044600938967136
|
| 109 |
+
- name: F1 (macro)
|
| 110 |
+
type: f1_macro
|
| 111 |
+
value: 0.5658272058955415
|
| 112 |
+
- task:
|
| 113 |
+
name: Lexical Relation Classification (EVALution)
|
| 114 |
+
type: classification
|
| 115 |
+
dataset:
|
| 116 |
+
name: BLESS
|
| 117 |
+
args: relbert/lexical_relation_classification
|
| 118 |
+
type: relation-classification
|
| 119 |
+
metrics:
|
| 120 |
+
- name: F1
|
| 121 |
+
type: f1
|
| 122 |
+
value: 0.6343445287107259
|
| 123 |
+
- name: F1 (macro)
|
| 124 |
+
type: f1_macro
|
| 125 |
+
value: 0.6053012278166984
|
| 126 |
+
- task:
|
| 127 |
+
name: Lexical Relation Classification (K&H+N)
|
| 128 |
+
type: classification
|
| 129 |
+
dataset:
|
| 130 |
+
name: K&H+N
|
| 131 |
+
args: relbert/lexical_relation_classification
|
| 132 |
+
type: relation-classification
|
| 133 |
+
metrics:
|
| 134 |
+
- name: F1
|
| 135 |
+
type: f1
|
| 136 |
+
value: 0.9589622313417264
|
| 137 |
+
- name: F1 (macro)
|
| 138 |
+
type: f1_macro
|
| 139 |
+
value: 0.8820483966915638
|
| 140 |
+
- task:
|
| 141 |
+
name: Lexical Relation Classification (ROOT09)
|
| 142 |
+
type: classification
|
| 143 |
+
dataset:
|
| 144 |
+
name: ROOT09
|
| 145 |
+
args: relbert/lexical_relation_classification
|
| 146 |
+
type: relation-classification
|
| 147 |
+
metrics:
|
| 148 |
+
- name: F1
|
| 149 |
+
type: f1
|
| 150 |
+
value: 0.8824819805703541
|
| 151 |
+
- name: F1 (macro)
|
| 152 |
+
type: f1_macro
|
| 153 |
+
value: 0.8778053649821325
|
| 154 |
+
|
| 155 |
+
---
|
| 156 |
+
# relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1-child
|
| 157 |
+
|
| 158 |
+
RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on
|
| 159 |
+
[relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6).
|
| 160 |
+
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
|
| 161 |
+
It achieves the following results on the relation understanding tasks:
|
| 162 |
+
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1-child/raw/main/analogy.json)):
|
| 163 |
+
- Accuracy on SAT (full): 0.4385026737967914
|
| 164 |
+
- Accuracy on SAT: 0.4362017804154303
|
| 165 |
+
- Accuracy on BATS: 0.5786548082267927
|
| 166 |
+
- Accuracy on U2: 0.41228070175438597
|
| 167 |
+
- Accuracy on U4: 0.4074074074074074
|
| 168 |
+
- Accuracy on Google: 0.802
|
| 169 |
+
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1-child/raw/main/classification.json)):
|
| 170 |
+
- Micro F1 score on BLESS: 0.9026668675606448
|
| 171 |
+
- Micro F1 score on CogALexV: 0.8044600938967136
|
| 172 |
+
- Micro F1 score on EVALution: 0.6343445287107259
|
| 173 |
+
- Micro F1 score on K&H+N: 0.9589622313417264
|
| 174 |
+
- Micro F1 score on ROOT09: 0.8824819805703541
|
| 175 |
+
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1-child/raw/main/relation_mapping.json)):
|
| 176 |
+
- Accuracy on Relation Mapping: 0.8001190476190476
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
### Usage
|
| 180 |
+
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
|
| 181 |
+
```shell
|
| 182 |
+
pip install relbert
|
| 183 |
+
```
|
| 184 |
+
and activate model as below.
|
| 185 |
+
```python
|
| 186 |
+
from relbert import RelBERT
|
| 187 |
+
model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1-child")
|
| 188 |
+
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
|
| 189 |
+
```
|
| 190 |
+
|
| 191 |
+
### Training hyperparameters
|
| 192 |
+
|
| 193 |
+
The following hyperparameters were used during training:
|
| 194 |
+
- model: roberta-base
|
| 195 |
+
- max_length: 64
|
| 196 |
+
- mode: average
|
| 197 |
+
- data: relbert/semeval2012_relational_similarity_v6
|
| 198 |
+
- split: train
|
| 199 |
+
- split_eval: validation
|
| 200 |
+
- template_mode: manual
|
| 201 |
+
- loss_function: nce_logout
|
| 202 |
+
- classification_loss: False
|
| 203 |
+
- temperature_nce_constant: 0.05
|
| 204 |
+
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
|
| 205 |
+
- epoch: 5
|
| 206 |
+
- batch: 128
|
| 207 |
+
- lr: 5e-06
|
| 208 |
+
- lr_decay: False
|
| 209 |
+
- lr_warmup: 1
|
| 210 |
+
- weight_decay: 0
|
| 211 |
+
- random_seed: 1
|
| 212 |
+
- exclude_relation: None
|
| 213 |
+
- n_sample: 320
|
| 214 |
+
- gradient_accumulation: 8
|
| 215 |
+
- relation_level: None
|
| 216 |
+
- data_level: child
|
| 217 |
+
|
| 218 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1-child/raw/main/trainer_config.json).
|
| 219 |
+
|
| 220 |
+
### Reference
|
| 221 |
+
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
| 222 |
+
|
| 223 |
+
```
|
| 224 |
+
|
| 225 |
+
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
|
| 226 |
+
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
|
| 227 |
+
author = "Ushio, Asahi and
|
| 228 |
+
Schockaert, Steven and
|
| 229 |
+
Camacho-Collados, Jose",
|
| 230 |
+
booktitle = "EMNLP 2021",
|
| 231 |
+
year = "2021",
|
| 232 |
+
address = "Online",
|
| 233 |
+
publisher = "Association for Computational Linguistics",
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
```
|
analogy.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"distance_function": "cosine_similarity", "sat/test": 0.4362017804154303, "sat/valid": 0.4594594594594595, "u2/test": 0.41228070175438597, "u2/valid": 0.4166666666666667, "u4/test": 0.4074074074074074, "u4/valid": 0.3958333333333333, "google/test": 0.802, "google/valid": 0.84, "bats/test": 0.5786548082267927, "bats/valid": 0.5527638190954773, "sat_full": 0.4385026737967914}
|
classification.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9026668675606448, "test/f1_macro": 0.894134460103921, "test/f1_micro": 0.9026668675606448, "test/p_macro": 0.892588409876728, "test/p_micro": 0.9026668675606448, "test/r_macro": 0.8964480044828029, "test/r_micro": 0.9026668675606448}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8044600938967136, "test/f1_macro": 0.5658272058955415, "test/f1_micro": 0.8044600938967136, "test/p_macro": 0.6174598416344621, "test/p_micro": 0.8044600938967136, "test/r_macro": 0.5302328559317095, "test/r_micro": 0.8044600938967136}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6343445287107259, "test/f1_macro": 0.6053012278166984, "test/f1_micro": 0.6343445287107259, "test/p_macro": 0.6223254319659148, "test/p_micro": 0.6343445287107259, "test/r_macro": 0.5967483205756926, "test/r_micro": 0.6343445287107259}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9589622313417264, "test/f1_macro": 0.8820483966915638, "test/f1_micro": 0.9589622313417264, "test/p_macro": 0.8890767331056941, "test/p_micro": 0.9589622313417264, "test/r_macro": 0.8753427090914881, "test/r_micro": 0.9589622313417264}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8824819805703541, "test/f1_macro": 0.8778053649821325, "test/f1_micro": 0.8824819805703541, "test/p_macro": 0.883074485741249, "test/p_micro": 0.8824819805703541, "test/r_macro": 0.8744216188970667, "test/r_micro": 0.8824819805703541}}
|
config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "
|
| 3 |
"architectures": [
|
| 4 |
"RobertaModel"
|
| 5 |
],
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "roberta-base",
|
| 3 |
"architectures": [
|
| 4 |
"RobertaModel"
|
| 5 |
],
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5255f21a611580ae96c63e70290b371c6a6a324f7498e23b8bba091a5ba93325
|
| 3 |
+
size 498652017
|
relation_mapping.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"accuracy": 0.8001190476190476, "prediction": [{"source": ["solar system", "sun", "planet", "mass", "attracts", "revolves", "gravity"], "true": ["atom", "nucleus", "electron", "charge", "attracts", "revolves", "electromagnetism"], "pred": ["electron", "atom", "nucleus", "charge", "attracts", "revolves", "electromagnetism"], "alignment_match": false, "accuracy": 0.5714285714285714, "similarity": 0.7947985265310452, "similarity_true": 0.7864812442673335}, {"source": ["water", "flows", "pressure", "water tower", "bucket", "filling", "emptying", "hydrodynamics"], "true": ["heat", "transfers", "temperature", "burner", "kettle", "heating", "cooling", "thermodynamics"], "pred": ["temperature", "transfers", "heat", "heating", "kettle", "burner", "cooling", "thermodynamics"], "alignment_match": false, "accuracy": 0.5, "similarity": 0.7490269508432464, "similarity_true": 0.7475804797256173}, {"source": ["waves", "shore", "reflects", "water", "breakwater", "rough", "calm", "crashing"], "true": ["sounds", "wall", "echoes", "air", "insulation", "loud", "quiet", "vibrating"], "pred": ["sounds", "wall", "echoes", "air", "insulation", "loud", "quiet", "vibrating"], "alignment_match": true, "accuracy": 1, "similarity": 0.7503301451832284, "similarity_true": 0.7503301451832284}, {"source": ["combustion", "fire", "fuel", "burning", "hot", "intense", "oxygen", "carbon dioxide"], "true": ["respiration", "animal", "food", "breathing", "living", "vigorous", "oxygen", "carbon dioxide"], "pred": ["respiration", "animal", "food", "breathing", "living", "vigorous", "oxygen", "carbon dioxide"], "alignment_match": true, "accuracy": 1, "similarity": 0.8099025054789661, "similarity_true": 0.8099025054789661}, {"source": ["sound", "low", "high", "echoes", "loud", "quiet", "horn"], "true": ["light", "red", "violet", "reflects", "bright", "dim", "lens"], "pred": ["light", "red", "reflects", "violet", "bright", "dim", "lens"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.7660256460170678, "similarity_true": 0.7589492282937054}, {"source": ["projectile", "trajectory", "earth", "parabolic", "air", "gravity", "attracts"], "true": ["planet", "orbit", "sun", "elliptical", "space", "gravity", "attracts"], "pred": ["sun", "orbit", "planet", "elliptical", "space", "gravity", "attracts"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.8364050965656179, "similarity_true": 0.8228878676810606}, {"source": ["breeds", "selection", "conformance", "artificial", "popularity", "breeding", "domesticated"], "true": ["species", "competition", "adaptation", "natural", "fitness", "mating", "wild"], "pred": ["species", "competition", "fitness", "natural", "adaptation", "mating", "wild"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.7637972256843206, "similarity_true": 0.7630792765324248}, {"source": ["ball", "billiards", "speed", "table", "bouncing", "moving", "slow", "fast"], "true": ["molecules", "gas", "temperature", "container", "pressing", "moving", "cold", "hot"], "pred": ["molecules", "gas", "pressing", "container", "temperature", "moving", "cold", "hot"], "alignment_match": false, "accuracy": 0.75, "similarity": 0.7563973788327476, "similarity_true": 0.7538429383709471}, {"source": ["computer", "processing", "erasing", "write", "read", "memory", "outputs", "inputs", "bug"], "true": ["mind", "thinking", "forgetting", "memorize", "remember", "memory", "muscles", "senses", "mistake"], "pred": ["mind", "thinking", "forgetting", "memorize", "remember", "memory", "muscles", "senses", "mistake"], "alignment_match": true, "accuracy": 1, "similarity": 0.75032197651817, "similarity_true": 0.75032197651817}, {"source": ["slot machines", "reels", "spinning", "winning", "losing"], "true": ["bacteria", "genes", "mutating", "reproducing", "dying"], "pred": ["genes", "reproducing", "bacteria", "mutating", "dying"], "alignment_match": false, "accuracy": 0.2, "similarity": 0.682516873014841, "similarity_true": 0.6780339381648055}, {"source": ["war", "soldier", "destroy", "fighting", "defeat", "attacks", "weapon"], "true": ["argument", "debater", "refute", "arguing", "acceptance", "criticizes", "logic"], "pred": ["argument", "debater", "refute", "arguing", "acceptance", "criticizes", "logic"], "alignment_match": true, "accuracy": 1, "similarity": 0.7449754419622724, "similarity_true": 0.7449754419622724}, {"source": ["buyer", "merchandise", "buying", "selling", "returning", "valuable", "worthless"], "true": ["believer", "belief", "accepting", "advocating", "rejecting", "true", "false"], "pred": ["believer", "advocating", "belief", "accepting", "rejecting", "true", "false"], "alignment_match": false, "accuracy": 0.5714285714285714, "similarity": 0.7374566341038511, "similarity_true": 0.7309577679029111}, {"source": ["foundations", "buildings", "supporting", "solid", "weak", "crack"], "true": ["reasons", "theories", "confirming", "rational", "dubious", "flaw"], "pred": ["reasons", "theories", "confirming", "rational", "dubious", "flaw"], "alignment_match": true, "accuracy": 1, "similarity": 0.7094526992601076, "similarity_true": 0.7094526992601076}, {"source": ["obstructions", "destination", "route", "traveller", "traveling", "companion", "arriving"], "true": ["difficulties", "goal", "plan", "person", "problem solving", "partner", "succeeding"], "pred": ["difficulties", "goal", "plan", "person", "problem solving", "partner", "succeeding"], "alignment_match": true, "accuracy": 1, "similarity": 0.7606483483254272, "similarity_true": 0.7606483483254272}, {"source": ["money", "allocate", "budget", "effective", "cheap", "expansive"], "true": ["time", "invest", "schedule", "efficient", "quick", "slow"], "pred": ["time", "invest", "schedule", "slow", "quick", "efficient"], "alignment_match": false, "accuracy": 0.6666666666666666, "similarity": 0.797662803114076, "similarity_true": 0.7959334739740241}, {"source": ["seeds", "planted", "fruitful", "fruit", "grow", "wither", "blossom"], "true": ["ideas", "inspired", "productive", "product", "develop", "fail", "succeed"], "pred": ["ideas", "inspired", "productive", "product", "develop", "fail", "succeed"], "alignment_match": true, "accuracy": 1, "similarity": 0.7851878855243125, "similarity_true": 0.7851878855243125}, {"source": ["machine", "working", "turned on", "turned off", "broken", "power", "repair"], "true": ["mind", "thinking", "awake", "asleep", "confused", "intelligence", "therapy"], "pred": ["mind", "thinking", "awake", "asleep", "confused", "intelligence", "therapy"], "alignment_match": true, "accuracy": 1, "similarity": 0.6819180179843746, "similarity_true": 0.6819180179843746}, {"source": ["object", "hold", "weight", "heavy", "light"], "true": ["idea", "understand", "analyze", "important", "trivial"], "pred": ["idea", "understand", "trivial", "important", "analyze"], "alignment_match": false, "accuracy": 0.6, "similarity": 0.7337459658992304, "similarity_true": 0.7313624122281329}, {"source": ["follow", "leader", "path", "follower", "lost", "wanders", "twisted", "straight"], "true": ["understand", "speaker", "argument", "listener", "misunderstood", "digresses", "complicated", "simple"], "pred": ["understand", "speaker", "argument", "listener", "misunderstood", "digresses", "complicated", "simple"], "alignment_match": true, "accuracy": 1, "similarity": 0.7414432826891104, "similarity_true": 0.7414432826891104}, {"source": ["seeing", "light", "illuminating", "darkness", "view", "hidden"], "true": ["understanding", "knowledge", "explaining", "confusion", "interpretation", "secret"], "pred": ["understanding", "knowledge", "explaining", "confusion", "interpretation", "secret"], "alignment_match": true, "accuracy": 1, "similarity": 0.750532352352461, "similarity_true": 0.750532352352461}]}
|
tokenizer_config.json
CHANGED
|
@@ -6,7 +6,7 @@
|
|
| 6 |
"errors": "replace",
|
| 7 |
"mask_token": "<mask>",
|
| 8 |
"model_max_length": 512,
|
| 9 |
-
"name_or_path": "
|
| 10 |
"pad_token": "<pad>",
|
| 11 |
"sep_token": "</s>",
|
| 12 |
"special_tokens_map_file": null,
|
|
|
|
| 6 |
"errors": "replace",
|
| 7 |
"mask_token": "<mask>",
|
| 8 |
"model_max_length": 512,
|
| 9 |
+
"name_or_path": "roberta-base",
|
| 10 |
"pad_token": "<pad>",
|
| 11 |
"sep_token": "</s>",
|
| 12 |
"special_tokens_map_file": null,
|
trainer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"model": "roberta-base", "max_length": 64, "mode": "average", "data": "relbert/semeval2012_relational_similarity_v6", "split": "train", "split_eval": "validation", "template_mode": "manual", "template": "Today, I finally discovered the relation between <subj> and <obj> : <mask>", "loss_function": "nce_logout", "classification_loss": false, "temperature_nce_constant": 0.05, "temperature_nce_rank": {"min": 0.01, "max": 0.05, "type": "linear"}, "epoch": 5, "batch": 128, "lr": 5e-06, "lr_decay": false, "lr_warmup": 1, "weight_decay": 0, "random_seed": 1, "exclude_relation": null, "n_sample": 320, "gradient_accumulation": 8, "relation_level": null, "data_level": "child"}
|
validation_loss.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"split": "validation", "loss": 9.140040714529496, "data": "relbert/semeval2012_relational_similarity_v6", "exclude_relation": null, "relation_level": null, "level": "child"}
|