asahi417 commited on
Commit
8b589b5
1 Parent(s): ed259df

model update

Browse files
README.md ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - relbert/semeval2012_relational_similarity_v6
4
+ model-index:
5
+ - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-loob-0
6
+ results:
7
+ - task:
8
+ name: Relation Mapping
9
+ type: sorting-task
10
+ dataset:
11
+ name: Relation Mapping
12
+ args: relbert/relation_mapping
13
+ type: relation-mapping
14
+ metrics:
15
+ - name: Accuracy
16
+ type: accuracy
17
+ value: 0.6438492063492064
18
+ - task:
19
+ name: Analogy Questions (SAT full)
20
+ type: multiple-choice-qa
21
+ dataset:
22
+ name: SAT full
23
+ args: relbert/analogy_questions
24
+ type: analogy-questions
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.32887700534759357
29
+ - task:
30
+ name: Analogy Questions (SAT)
31
+ type: multiple-choice-qa
32
+ dataset:
33
+ name: SAT
34
+ args: relbert/analogy_questions
35
+ type: analogy-questions
36
+ metrics:
37
+ - name: Accuracy
38
+ type: accuracy
39
+ value: 0.3264094955489614
40
+ - task:
41
+ name: Analogy Questions (BATS)
42
+ type: multiple-choice-qa
43
+ dataset:
44
+ name: BATS
45
+ args: relbert/analogy_questions
46
+ type: analogy-questions
47
+ metrics:
48
+ - name: Accuracy
49
+ type: accuracy
50
+ value: 0.5302946081156198
51
+ - task:
52
+ name: Analogy Questions (Google)
53
+ type: multiple-choice-qa
54
+ dataset:
55
+ name: Google
56
+ args: relbert/analogy_questions
57
+ type: analogy-questions
58
+ metrics:
59
+ - name: Accuracy
60
+ type: accuracy
61
+ value: 0.648
62
+ - task:
63
+ name: Analogy Questions (U2)
64
+ type: multiple-choice-qa
65
+ dataset:
66
+ name: U2
67
+ args: relbert/analogy_questions
68
+ type: analogy-questions
69
+ metrics:
70
+ - name: Accuracy
71
+ type: accuracy
72
+ value: 0.3201754385964912
73
+ - task:
74
+ name: Analogy Questions (U4)
75
+ type: multiple-choice-qa
76
+ dataset:
77
+ name: U4
78
+ args: relbert/analogy_questions
79
+ type: analogy-questions
80
+ metrics:
81
+ - name: Accuracy
82
+ type: accuracy
83
+ value: 0.36574074074074076
84
+ - task:
85
+ name: Lexical Relation Classification (BLESS)
86
+ type: classification
87
+ dataset:
88
+ name: BLESS
89
+ args: relbert/lexical_relation_classification
90
+ type: relation-classification
91
+ metrics:
92
+ - name: F1
93
+ type: f1
94
+ value: 0.877655567274371
95
+ - name: F1 (macro)
96
+ type: f1_macro
97
+ value: 0.8691271164987491
98
+ - task:
99
+ name: Lexical Relation Classification (CogALexV)
100
+ type: classification
101
+ dataset:
102
+ name: CogALexV
103
+ args: relbert/lexical_relation_classification
104
+ type: relation-classification
105
+ metrics:
106
+ - name: F1
107
+ type: f1
108
+ value: 0.7129107981220657
109
+ - name: F1 (macro)
110
+ type: f1_macro
111
+ value: 0.4196917803483246
112
+ - task:
113
+ name: Lexical Relation Classification (EVALution)
114
+ type: classification
115
+ dataset:
116
+ name: BLESS
117
+ args: relbert/lexical_relation_classification
118
+ type: relation-classification
119
+ metrics:
120
+ - name: F1
121
+ type: f1
122
+ value: 0.5368364030335862
123
+ - name: F1 (macro)
124
+ type: f1_macro
125
+ value: 0.5188634387372184
126
+ - task:
127
+ name: Lexical Relation Classification (K&H+N)
128
+ type: classification
129
+ dataset:
130
+ name: K&H+N
131
+ args: relbert/lexical_relation_classification
132
+ type: relation-classification
133
+ metrics:
134
+ - name: F1
135
+ type: f1
136
+ value: 0.9531195659734298
137
+ - name: F1 (macro)
138
+ type: f1_macro
139
+ value: 0.8766279141586715
140
+ - task:
141
+ name: Lexical Relation Classification (ROOT09)
142
+ type: classification
143
+ dataset:
144
+ name: ROOT09
145
+ args: relbert/lexical_relation_classification
146
+ type: relation-classification
147
+ metrics:
148
+ - name: F1
149
+ type: f1
150
+ value: 0.8031964901284864
151
+ - name: F1 (macro)
152
+ type: f1_macro
153
+ value: 0.8003449544921196
154
+
155
+ ---
156
+ # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-loob-0
157
+
158
+ RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on
159
+ [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6).
160
+ Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
161
+ It achieves the following results on the relation understanding tasks:
162
+ - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-loob-0/raw/main/analogy.json)):
163
+ - Accuracy on SAT (full): 0.32887700534759357
164
+ - Accuracy on SAT: 0.3264094955489614
165
+ - Accuracy on BATS: 0.5302946081156198
166
+ - Accuracy on U2: 0.3201754385964912
167
+ - Accuracy on U4: 0.36574074074074076
168
+ - Accuracy on Google: 0.648
169
+ - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-loob-0/raw/main/classification.json)):
170
+ - Micro F1 score on BLESS: 0.877655567274371
171
+ - Micro F1 score on CogALexV: 0.7129107981220657
172
+ - Micro F1 score on EVALution: 0.5368364030335862
173
+ - Micro F1 score on K&H+N: 0.9531195659734298
174
+ - Micro F1 score on ROOT09: 0.8031964901284864
175
+ - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-loob-0/raw/main/relation_mapping.json)):
176
+ - Accuracy on Relation Mapping: 0.6438492063492064
177
+
178
+
179
+ ### Usage
180
+ This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
181
+ ```shell
182
+ pip install relbert
183
+ ```
184
+ and activate model as below.
185
+ ```python
186
+ from relbert import RelBERT
187
+ model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-loob-0")
188
+ vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
189
+ ```
190
+
191
+ ### Training hyperparameters
192
+
193
+ The following hyperparameters were used during training:
194
+ - model: roberta-base
195
+ - max_length: 64
196
+ - mode: average
197
+ - data: relbert/semeval2012_relational_similarity_v6
198
+ - split: train
199
+ - split_eval: validation
200
+ - template_mode: manual
201
+ - loss_function: info_loob
202
+ - classification_loss: False
203
+ - temperature_nce_constant: 0.05
204
+ - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
205
+ - epoch: 10
206
+ - batch: 128
207
+ - lr: 5e-06
208
+ - lr_decay: False
209
+ - lr_warmup: 1
210
+ - weight_decay: 0
211
+ - random_seed: 0
212
+ - exclude_relation: None
213
+ - n_sample: 320
214
+ - gradient_accumulation: 8
215
+ - relation_level: None
216
+
217
+ The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-loob-0/raw/main/trainer_config.json).
218
+
219
+ ### Reference
220
+ If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
221
+
222
+ ```
223
+
224
+ @inproceedings{ushio-etal-2021-distilling-relation-embeddings,
225
+ title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
226
+ author = "Ushio, Asahi and
227
+ Schockaert, Steven and
228
+ Camacho-Collados, Jose",
229
+ booktitle = "EMNLP 2021",
230
+ year = "2021",
231
+ address = "Online",
232
+ publisher = "Association for Computational Linguistics",
233
+ }
234
+
235
+ ```
analogy.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"distance_function": "cosine_similarity", "sat/test": 0.3264094955489614, "sat/valid": 0.35135135135135137, "u2/test": 0.3201754385964912, "u2/valid": 0.2916666666666667, "u4/test": 0.36574074074074076, "u4/valid": 0.375, "google/test": 0.648, "google/valid": 0.68, "bats/test": 0.5302946081156198, "bats/valid": 0.5979899497487438, "sat_full": 0.32887700534759357}
classification.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.877655567274371, "test/f1_macro": 0.8691271164987491, "test/f1_micro": 0.877655567274371, "test/p_macro": 0.8702519502264461, "test/p_micro": 0.877655567274371, "test/r_macro": 0.8683594985863752, "test/r_micro": 0.877655567274371}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.7129107981220657, "test/f1_macro": 0.4196917803483246, "test/f1_micro": 0.7129107981220657, "test/p_macro": 0.4454147273209427, "test/p_micro": 0.7129107981220657, "test/r_macro": 0.40126030693272546, "test/r_micro": 0.7129107981220657}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.5368364030335862, "test/f1_macro": 0.5188634387372184, "test/f1_micro": 0.5368364030335862, "test/p_macro": 0.5315946062326986, "test/p_micro": 0.5368364030335862, "test/r_macro": 0.5116213650204663, "test/r_micro": 0.5368364030335862}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9531195659734298, "test/f1_macro": 0.8766279141586715, "test/f1_micro": 0.9531195659734298, "test/p_macro": 0.8962210066132437, "test/p_micro": 0.9531195659734298, "test/r_macro": 0.8596966206120572, "test/r_micro": 0.9531195659734298}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8031964901284864, "test/f1_macro": 0.8003449544921196, "test/f1_micro": 0.8031964901284864, "test/p_macro": 0.7985073234275869, "test/p_micro": 0.8031964901284864, "test/r_macro": 0.8023155275351975, "test/r_micro": 0.8031964901284864}}
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "relbert_output/models/semeval2012-v6.c.info_loob.average.roberta-base.0.000005.8.0.05.320.0/best_model",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "roberta-base",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8ad2a5db8f019ca481338e026e4f104c72aa56709850aa1172171333f15ece74
3
- size 498649201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15876d8ca1c809793098b21a2fd1aa55d75820e2ae79d51241ce72de0a5fe507
3
+ size 498652017
relation_mapping.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": 0.6438492063492064, "prediction": [{"source": ["solar system", "sun", "planet", "mass", "attracts", "revolves", "gravity"], "true": ["atom", "nucleus", "electron", "charge", "attracts", "revolves", "electromagnetism"], "pred": ["electromagnetism", "electron", "nucleus", "atom", "attracts", "revolves", "charge"], "alignment_match": false, "accuracy": 0.2857142857142857, "similarity": 0.7724826312481731, "similarity_true": 0.7232682454577108}, {"source": ["water", "flows", "pressure", "water tower", "bucket", "filling", "emptying", "hydrodynamics"], "true": ["heat", "transfers", "temperature", "burner", "kettle", "heating", "cooling", "thermodynamics"], "pred": ["heat", "burner", "temperature", "transfers", "kettle", "heating", "cooling", "thermodynamics"], "alignment_match": false, "accuracy": 0.75, "similarity": 0.300724207844675, "similarity_true": 0.29664231307175437}, {"source": ["waves", "shore", "reflects", "water", "breakwater", "rough", "calm", "crashing"], "true": ["sounds", "wall", "echoes", "air", "insulation", "loud", "quiet", "vibrating"], "pred": ["sounds", "wall", "echoes", "air", "insulation", "loud", "quiet", "vibrating"], "alignment_match": true, "accuracy": 1, "similarity": 0.40698160439182474, "similarity_true": 0.40698160439182474}, {"source": ["combustion", "fire", "fuel", "burning", "hot", "intense", "oxygen", "carbon dioxide"], "true": ["respiration", "animal", "food", "breathing", "living", "vigorous", "oxygen", "carbon dioxide"], "pred": ["respiration", "animal", "food", "breathing", "living", "vigorous", "oxygen", "carbon dioxide"], "alignment_match": true, "accuracy": 1, "similarity": 0.6133862590739939, "similarity_true": 0.6133862590739939}, {"source": ["sound", "low", "high", "echoes", "loud", "quiet", "horn"], "true": ["light", "red", "violet", "reflects", "bright", "dim", "lens"], "pred": ["light", "red", "reflects", "violet", "bright", "dim", "lens"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.7871932597260537, "similarity_true": 0.7735238397507866}, {"source": ["projectile", "trajectory", "earth", "parabolic", "air", "gravity", "attracts"], "true": ["planet", "orbit", "sun", "elliptical", "space", "gravity", "attracts"], "pred": ["sun", "orbit", "planet", "elliptical", "space", "gravity", "attracts"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.8705342989734675, "similarity_true": 0.8640845424498501}, {"source": ["breeds", "selection", "conformance", "artificial", "popularity", "breeding", "domesticated"], "true": ["species", "competition", "adaptation", "natural", "fitness", "mating", "wild"], "pred": ["species", "adaptation", "fitness", "natural", "competition", "mating", "wild"], "alignment_match": false, "accuracy": 0.5714285714285714, "similarity": 0.6991709253652926, "similarity_true": 0.6731746800680759}, {"source": ["ball", "billiards", "speed", "table", "bouncing", "moving", "slow", "fast"], "true": ["molecules", "gas", "temperature", "container", "pressing", "moving", "cold", "hot"], "pred": ["molecules", "gas", "temperature", "container", "cold", "moving", "pressing", "hot"], "alignment_match": false, "accuracy": 0.75, "similarity": 0.7845157744442195, "similarity_true": 0.7808282631426937}, {"source": ["computer", "processing", "erasing", "write", "read", "memory", "outputs", "inputs", "bug"], "true": ["mind", "thinking", "forgetting", "memorize", "remember", "memory", "muscles", "senses", "mistake"], "pred": ["senses", "forgetting", "thinking", "remember", "muscles", "memory", "mind", "memorize", "mistake"], "alignment_match": false, "accuracy": 0.2222222222222222, "similarity": 0.7494422063048711, "similarity_true": 0.7353060077015228}, {"source": ["slot machines", "reels", "spinning", "winning", "losing"], "true": ["bacteria", "genes", "mutating", "reproducing", "dying"], "pred": ["bacteria", "genes", "reproducing", "mutating", "dying"], "alignment_match": false, "accuracy": 0.6, "similarity": 0.28346165131729056, "similarity_true": 0.24754729720333474}, {"source": ["war", "soldier", "destroy", "fighting", "defeat", "attacks", "weapon"], "true": ["argument", "debater", "refute", "arguing", "acceptance", "criticizes", "logic"], "pred": ["argument", "debater", "refute", "arguing", "acceptance", "logic", "criticizes"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.31032564051218475, "similarity_true": 0.2899659783334826}, {"source": ["buyer", "merchandise", "buying", "selling", "returning", "valuable", "worthless"], "true": ["believer", "belief", "accepting", "advocating", "rejecting", "true", "false"], "pred": ["believer", "belief", "accepting", "false", "rejecting", "true", "advocating"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.29282796592124677, "similarity_true": 0.27978962955554176}, {"source": ["foundations", "buildings", "supporting", "solid", "weak", "crack"], "true": ["reasons", "theories", "confirming", "rational", "dubious", "flaw"], "pred": ["theories", "rational", "confirming", "reasons", "flaw", "dubious"], "alignment_match": false, "accuracy": 0.16666666666666666, "similarity": 0.22027388310834467, "similarity_true": 0.18823163323084224}, {"source": ["obstructions", "destination", "route", "traveller", "traveling", "companion", "arriving"], "true": ["difficulties", "goal", "plan", "person", "problem solving", "partner", "succeeding"], "pred": ["difficulties", "person", "plan", "goal", "problem solving", "partner", "succeeding"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.3605133764416722, "similarity_true": 0.3603943168037333}, {"source": ["money", "allocate", "budget", "effective", "cheap", "expansive"], "true": ["time", "invest", "schedule", "efficient", "quick", "slow"], "pred": ["invest", "time", "schedule", "efficient", "quick", "slow"], "alignment_match": false, "accuracy": 0.6666666666666666, "similarity": 0.27929782259615443, "similarity_true": 0.27611494014153914}, {"source": ["seeds", "planted", "fruitful", "fruit", "grow", "wither", "blossom"], "true": ["ideas", "inspired", "productive", "product", "develop", "fail", "succeed"], "pred": ["ideas", "succeed", "productive", "inspired", "develop", "fail", "product"], "alignment_match": false, "accuracy": 0.5714285714285714, "similarity": 0.29245608410932267, "similarity_true": 0.27841258349247516}, {"source": ["machine", "working", "turned on", "turned off", "broken", "power", "repair"], "true": ["mind", "thinking", "awake", "asleep", "confused", "intelligence", "therapy"], "pred": ["asleep", "thinking", "mind", "awake", "confused", "intelligence", "therapy"], "alignment_match": false, "accuracy": 0.5714285714285714, "similarity": 0.2920938882199935, "similarity_true": 0.28394532848544246}, {"source": ["object", "hold", "weight", "heavy", "light"], "true": ["idea", "understand", "analyze", "important", "trivial"], "pred": ["trivial", "understand", "idea", "important", "analyze"], "alignment_match": false, "accuracy": 0.4, "similarity": 0.271852394337335, "similarity_true": 0.26428489274812306}, {"source": ["follow", "leader", "path", "follower", "lost", "wanders", "twisted", "straight"], "true": ["understand", "speaker", "argument", "listener", "misunderstood", "digresses", "complicated", "simple"], "pred": ["understand", "speaker", "argument", "listener", "complicated", "digresses", "misunderstood", "simple"], "alignment_match": false, "accuracy": 0.75, "similarity": 0.35785509296761076, "similarity_true": 0.34589510020522535}, {"source": ["seeing", "light", "illuminating", "darkness", "view", "hidden"], "true": ["understanding", "knowledge", "explaining", "confusion", "interpretation", "secret"], "pred": ["understanding", "knowledge", "explaining", "confusion", "interpretation", "secret"], "alignment_match": true, "accuracy": 1, "similarity": 0.40748961347131474, "similarity_true": 0.40748961347131474}]}
tokenizer_config.json CHANGED
@@ -6,7 +6,7 @@
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
- "name_or_path": "relbert_output/models/semeval2012-v6.c.info_loob.average.roberta-base.0.000005.8.0.05.320.0/best_model",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,
 
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
+ "name_or_path": "roberta-base",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,
trainer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"model": "roberta-base", "max_length": 64, "mode": "average", "data": "relbert/semeval2012_relational_similarity_v6", "split": "train", "split_eval": "validation", "template_mode": "manual", "template": "Today, I finally discovered the relation between <subj> and <obj> : <mask>", "loss_function": "info_loob", "classification_loss": false, "temperature_nce_constant": 0.05, "temperature_nce_rank": {"min": 0.01, "max": 0.05, "type": "linear"}, "epoch": 10, "batch": 128, "lr": 5e-06, "lr_decay": false, "lr_warmup": 1, "weight_decay": 0, "random_seed": 0, "exclude_relation": null, "n_sample": 320, "gradient_accumulation": 8, "relation_level": null}
validation_loss.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"split": "validation", "loss": -17.238929681799483, "data": "relbert/semeval2012_relational_similarity_v6", "exclude_relation": null, "relation_level": null}