model update
Browse files
README.md
CHANGED
@@ -14,11 +14,11 @@ pipeline_tag: text2text-generation
|
|
14 |
tags:
|
15 |
- question generation
|
16 |
widget:
|
17 |
-
- text: "
|
18 |
example_title: "Question Generation Example 1"
|
19 |
-
- text: "
|
20 |
example_title: "Question Generation Example 2"
|
21 |
-
- text: "
|
22 |
example_title: "Question Generation Example 3"
|
23 |
model-index:
|
24 |
- name: lmqg/bart-base-subjqa-electronics
|
@@ -46,29 +46,6 @@ model-index:
|
|
46 |
- name: MoverScore
|
47 |
type: moverscore
|
48 |
value: 0.6600122624051745
|
49 |
-
- task:
|
50 |
-
name: Text2text Generation
|
51 |
-
type: text2text-generation
|
52 |
-
dataset:
|
53 |
-
name: lmqg/qg_squad
|
54 |
-
type: default
|
55 |
-
args: default
|
56 |
-
metrics:
|
57 |
-
- name: BLEU4
|
58 |
-
type: bleu4
|
59 |
-
value: 0.058123345679409084
|
60 |
-
- name: ROUGE-L
|
61 |
-
type: rouge-l
|
62 |
-
value: 0.3334983677039407
|
63 |
-
- name: METEOR
|
64 |
-
type: meteor
|
65 |
-
value: 0.11973204306563211
|
66 |
-
- name: BERTScore
|
67 |
-
type: bertscore
|
68 |
-
value: 0.8923039410086332
|
69 |
-
- name: MoverScore
|
70 |
-
type: moverscore
|
71 |
-
value: 0.5579797207844054
|
72 |
---
|
73 |
|
74 |
# Language Models Fine-tuning on Question Generation: `lmqg/bart-base-subjqa-electronics`
|
@@ -93,8 +70,7 @@ model_path = 'lmqg/bart-base-subjqa-electronics'
|
|
93 |
pipe = pipeline("text2text-generation", model_path)
|
94 |
|
95 |
# Question Generation
|
96 |
-
|
97 |
-
question = pipe(input_text)
|
98 |
```
|
99 |
|
100 |
## Evaluation Metrics
|
@@ -104,15 +80,9 @@ question = pipe(input_text)
|
|
104 |
|
105 |
| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
|
106 |
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
|
107 |
-
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | electronics | 0.
|
108 |
-
|
109 |
|
110 |
|
111 |
-
### Out-of-domain Metrics
|
112 |
-
|
113 |
-
| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
|
114 |
-
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
|
115 |
-
| [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | default | 0.058123345679409084 | 0.3334983677039407 | 0.11973204306563211 | 0.8923039410086332 | 0.5579797207844054 | [link](https://huggingface.co/lmqg/bart-base-subjqa-electronics/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json) |
|
116 |
|
117 |
|
118 |
## Training hyperparameters
|
|
|
14 |
tags:
|
15 |
- question generation
|
16 |
widget:
|
17 |
+
- text: "<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
|
18 |
example_title: "Question Generation Example 1"
|
19 |
+
- text: "Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
|
20 |
example_title: "Question Generation Example 2"
|
21 |
+
- text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ."
|
22 |
example_title: "Question Generation Example 3"
|
23 |
model-index:
|
24 |
- name: lmqg/bart-base-subjqa-electronics
|
|
|
46 |
- name: MoverScore
|
47 |
type: moverscore
|
48 |
value: 0.6600122624051745
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
---
|
50 |
|
51 |
# Language Models Fine-tuning on Question Generation: `lmqg/bart-base-subjqa-electronics`
|
|
|
70 |
pipe = pipeline("text2text-generation", model_path)
|
71 |
|
72 |
# Question Generation
|
73 |
+
question = pipe('<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.')
|
|
|
74 |
```
|
75 |
|
76 |
## Evaluation Metrics
|
|
|
80 |
|
81 |
| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
|
82 |
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
|
83 |
+
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | electronics | 0.038 | 0.294 | 0.251 | 0.938 | 0.66 | [link](https://huggingface.co/lmqg/bart-base-subjqa-electronics/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.electronics.json) |
|
|
|
84 |
|
85 |
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
## Training hyperparameters
|