Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 261.45 +/- 10.86
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f4a954700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f4a954790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f4a954820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f4a9548b0>", "_build": "<function ActorCriticPolicy._build at 0x7f9f4a954940>", "forward": "<function ActorCriticPolicy.forward at 0x7f9f4a9549d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9f4a954a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f4a954af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9f4a954b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f4a954c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f4a954ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f4a954d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9f4a94dc00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682671363302661002, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD+cz0tV4g/WN39PZew4L7yzlI9LyebPAAAAAAAAAAAzXwSvXE4fDzeW3c+K9T2vQEE4z1nkzm8AAAAAAAAAAAATNK7SO+XuhJhgrdmnXCySyitOrikljYAAIA/AACAP/JEFr+rZVW+81zbupvyHbnZ3dk9InNBOgAAAAAAAIA/zaXMPfZ0T7qS4cq23x1Bsp3GqTrzees1AAAAAAAAgD/Nrfg8Ane3P1LegT7X4y69AcWHvIZahj0AAAAAAAAAAObdNT3hQIC6CwPIu2sJybhVHcC6Zx83OAAAgD8AAIA/OtVKPoTy2T76Oki9cWxAvqhsWz1Snhc8AAAAAAAAAACz3BS+FG+uO3LnwTujFwu62XVMvXoq/ToAAIA/AACAP4CtAj0UroC65XdfN4+2djJExw87R0uCtgAAgD8AAIA/gPZJveGIp7prNyI4RiREMx+w0zrybDm3AACAPwAAgD9NCam9EQo4Pr1R+z3nfou+I2+UPHpwTD0AAAAAAAAAAGaGJ7xicJU//uFpvTZ5876lL0e9ZXaXOwAAAAAAAAAAIIYcPtDopT6bJ0O+kgJ6vkRTVbwTmVI8AAAAAAAAAACakAy+7GuUPiZ+6T7nAoy+atD1Pb8wvj0AAAAAAAAAAA0dGb6usoE+ckIePmohcL5d6Rs9+siQPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxvtx+6XEcECUhpRSlIwBbJRL/YwBdJRHQJ21GakRBeJ1fZQoaAZoCWgPQwjJHqFmSJxxQJSGlFKUaBVNGgFoFkdAnbXJ/PPcBXV9lChoBmgJaA9DCOCdfHpsKnFAlIaUUpRoFU1PAWgWR0CdzARxLkCFdX2UKGgGaAloD0MIrb1PVSG7ckCUhpRSlGgVTR8BaBZHQJ3MObWmP5p1fZQoaAZoCWgPQwjSxDvAU81wQJSGlFKUaBVNZwFoFkdAncw6XBxgiXV9lChoBmgJaA9DCPCjGvY7a3FAlIaUUpRoFU27AWgWR0CdzNkD6nBMdX2UKGgGaAloD0MITDYebHGWcUCUhpRSlGgVTTEBaBZHQJ3OFIAfdRB1fZQoaAZoCWgPQwjgha3Zip5wQJSGlFKUaBVNKgFoFkdAnc6/HLida3V9lChoBmgJaA9DCDnU78LW0m1AlIaUUpRoFU1yAWgWR0Cd0HVea8YidX2UKGgGaAloD0MImGw82GKZcECUhpRSlGgVTRsBaBZHQJ3QmjM3ZPF1fZQoaAZoCWgPQwgrw7gbhEdxQJSGlFKUaBVNSQFoFkdAndD79MsYmHV9lChoBmgJaA9DCJpd91bk33BAlIaUUpRoFU0kAWgWR0Cd0Pn889wFdX2UKGgGaAloD0MI8yA9Rc4FcUCUhpRSlGgVTXUBaBZHQJ3RBnSOR1Z1fZQoaAZoCWgPQwhj0t9L4SRvQJSGlFKUaBVNhQFoFkdAndPi1iONpHV9lChoBmgJaA9DCOT5DKh3+XBAlIaUUpRoFU0uAWgWR0Cd1IVRDTjOdX2UKGgGaAloD0MIUWhZ94+sX0CUhpRSlGgVTegDaBZHQJ3VLy7PIGR1fZQoaAZoCWgPQwhNwK+RpBltQJSGlFKUaBVNowFoFkdAndWy9qUNa3V9lChoBmgJaA9DCAgcCTTYYXJAlIaUUpRoFU0TAWgWR0Cd15iEQGwBdX2UKGgGaAloD0MIo1huafWxckCUhpRSlGgVTVsBaBZHQJ3X7t3OfNB1fZQoaAZoCWgPQwjbpKKxdmpxQJSGlFKUaBVNXgFoFkdAndkIaUA1enV9lChoBmgJaA9DCMRCrWleZ3FAlIaUUpRoFU0MAWgWR0Cd2n3B55Z9dX2UKGgGaAloD0MIzLOSVjyicECUhpRSlGgVTa4BaBZHQJ3bX82rGR51fZQoaAZoCWgPQwiD+Stkbg1yQJSGlFKUaBVNNgFoFkdAnduREjPfK3V9lChoBmgJaA9DCCZTBaMSYHJAlIaUUpRoFU00AWgWR0Cd3A1+iJwbdX2UKGgGaAloD0MIQC/cubBubECUhpRSlGgVTTQBaBZHQJ3cFouf29N1fZQoaAZoCWgPQwhTW+ogLw5xQJSGlFKUaBVNCgJoFkdAndwmgi/wiXV9lChoBmgJaA9DCHE9CtcjQXBAlIaUUpRoFU1tAWgWR0Cd3WuM+/xldX2UKGgGaAloD0MI4J7nT5swcUCUhpRSlGgVTfoBaBZHQJ3dzjyWiUR1fZQoaAZoCWgPQwjABdmyvO9wQJSGlFKUaBVNswFoFkdAnd34GY8dP3V9lChoBmgJaA9DCBjONcyQBnNAlIaUUpRoFU0UAWgWR0Cd30FWXC0odX2UKGgGaAloD0MIgEkqU4zGcECUhpRSlGgVTUoBaBZHQJ3f57qptJp1fZQoaAZoCWgPQwg91LZhlHJvQJSGlFKUaBVNSQFoFkdAneBrgOz6anV9lChoBmgJaA9DCIc1lUUhb3FAlIaUUpRoFU0HAWgWR0Cd4YCO3lS1dX2UKGgGaAloD0MIq65DNWWSc0CUhpRSlGgVTZkBaBZHQJ3hp6Rhc7h1fZQoaAZoCWgPQwgAA0GAzCNwQJSGlFKUaBVNEAFoFkdAneLrvTgEU3V9lChoBmgJaA9DCPZ5jPLMA29AlIaUUpRoFU1iAWgWR0Cd42x95QgtdX2UKGgGaAloD0MIrfnxlxZ/bUCUhpRSlGgVS/toFkdAneOlafSQYHV9lChoBmgJaA9DCJlk5CysCXJAlIaUUpRoFU0XAWgWR0Cd49uKGcnWdX2UKGgGaAloD0MIFZD2P0BubkCUhpRSlGgVTQ8BaBZHQJ3kKSs8xKx1fZQoaAZoCWgPQwgQdLSqJdJuQJSGlFKUaBVNKAFoFkdAneTeCkGiYnV9lChoBmgJaA9DCDWWsDZGZHJAlIaUUpRoFU1iAWgWR0Cd5iT7VJ+VdX2UKGgGaAloD0MIiUFg5VCkcECUhpRSlGgVTSYBaBZHQJ3mgVKwpvx1fZQoaAZoCWgPQwg9tfrqan9xQJSGlFKUaBVNRgFoFkdAneciNwR5DHV9lChoBmgJaA9DCGoy420lpXJAlIaUUpRoFU0bAmgWR0Cd6OMF2V3VdX2UKGgGaAloD0MIaTaPw2D9bUCUhpRSlGgVTSEBaBZHQJ3pYIldC3R1fZQoaAZoCWgPQwip3hrY6k5yQJSGlFKUaBVL+GgWR0Cd6XJAMUh3dX2UKGgGaAloD0MI3UJXItBncECUhpRSlGgVTXgBaBZHQJ3pgnPVurJ1fZQoaAZoCWgPQwgEAp1J24JxQJSGlFKUaBVNOwFoFkdAnemd0FKTS3V9lChoBmgJaA9DCOjAcoSMI3NAlIaUUpRoFU0OAWgWR0Cd6eAzpHI7dX2UKGgGaAloD0MI7KUpApy7ckCUhpRSlGgVTTABaBZHQJ4CiAavRqp1fZQoaAZoCWgPQwjk+Qyo98hxQJSGlFKUaBVL4WgWR0CeApDK5kLAdX2UKGgGaAloD0MIWJHRAUlRbUCUhpRSlGgVTRIBaBZHQJ4CvEYO2Ap1fZQoaAZoCWgPQwh6jPLMy+txQJSGlFKUaBVNUwFoFkdAngK58rqdH3V9lChoBmgJaA9DCC9SKAsf+nFAlIaUUpRoFU1LAWgWR0CeA7ZDArQPdX2UKGgGaAloD0MINum2RO4wcECUhpRSlGgVTWIBaBZHQJ4D5nZkCmx1fZQoaAZoCWgPQwjH9IQlHlhuQJSGlFKUaBVNcgFoFkdAngQpr+Hae3V9lChoBmgJaA9DCL8K8N1m+nBAlIaUUpRoFU0TAWgWR0CeBGvCMxXXdX2UKGgGaAloD0MIfevDeqOGckCUhpRSlGgVS+NoFkdAngWHjENvwXV9lChoBmgJaA9DCE5iEFg5mnJAlIaUUpRoFU1AAmgWR0CeBgWbwz+FdX2UKGgGaAloD0MITUusjMYnbECUhpRSlGgVS/1oFkdAngZhEfDDTHV9lChoBmgJaA9DCNwtyQE7K3BAlIaUUpRoFU0oAWgWR0CeBv5s0pEydX2UKGgGaAloD0MIKuEJvf65b0CUhpRSlGgVTR4BaBZHQJ4Hn3pOerd1fZQoaAZoCWgPQwiGIAcljFFyQJSGlFKUaBVNggFoFkdAnggZHuqm0nV9lChoBmgJaA9DCDtT6LwGPXBAlIaUUpRoFU1WAWgWR0CeCKgXMyJsdX2UKGgGaAloD0MISS2UTM7ScUCUhpRSlGgVTWYBaBZHQJ4JIabWmP51fZQoaAZoCWgPQwgkRPmClvFxQJSGlFKUaBVL+WgWR0CeCaNI9TxYdX2UKGgGaAloD0MI/IugMZMpUECUhpRSlGgVTQYBaBZHQJ4J8s7MgU11fZQoaAZoCWgPQwgKD5pdNztyQJSGlFKUaBVL5mgWR0CeCnJu2qkudX2UKGgGaAloD0MI63Hfal2jcUCUhpRSlGgVS+RoFkdAngvj7Q9idHV9lChoBmgJaA9DCIxMwK/RMHFAlIaUUpRoFU0vAWgWR0CeDGwTufEodX2UKGgGaAloD0MIg92wbVGRckCUhpRSlGgVTV0BaBZHQJ4MtaPjn3d1fZQoaAZoCWgPQwg9YvTcwkNxQJSGlFKUaBVNaQFoFkdAng0JlWfbsXV9lChoBmgJaA9DCF4vTRHgRHJAlIaUUpRoFU01AWgWR0CeDSgZjx0/dX2UKGgGaAloD0MIBTI7i54NcUCUhpRSlGgVTV8BaBZHQJ4Nn3225QR1fZQoaAZoCWgPQwgTtwpiIMltQJSGlFKUaBVNHAFoFkdAng5khRqGlHV9lChoBmgJaA9DCHMPCd+75nBAlIaUUpRoFU07AWgWR0CeDuoEB8x9dX2UKGgGaAloD0MIw9SWOsjqbUCUhpRSlGgVTRgBaBZHQJ4PiLQ5WBB1fZQoaAZoCWgPQwi1G33MB9ZLQJSGlFKUaBVLw2gWR0CeECgXuVopdX2UKGgGaAloD0MI+g0TDRJTcUCUhpRSlGgVTTkBaBZHQJ4SZDqnm7t1fZQoaAZoCWgPQwhrn47HjMBtQJSGlFKUaBVNcAFoFkdAnhPFYuCf6HV9lChoBmgJaA9DCJpBfGCHJ3BAlIaUUpRoFU2WAWgWR0CeFHoBJZntdX2UKGgGaAloD0MIY4BEEyhqbUCUhpRSlGgVTYUBaBZHQJ4WlZntfHB1fZQoaAZoCWgPQwgqWONsumVvQJSGlFKUaBVNFgFoFkdAnhczc6/7BXV9lChoBmgJaA9DCDqQ9dTqC25AlIaUUpRoFU1AAWgWR0CeF5T7l7tzdX2UKGgGaAloD0MIzEV8J+bKcUCUhpRSlGgVTQUBaBZHQJ4YYoOQQtl1fZQoaAZoCWgPQwiR0JZzKXJxQJSGlFKUaBVNkQFoFkdAnhnYoJAt4HV9lChoBmgJaA9DCEPJ5NROJm1AlIaUUpRoFU14AWgWR0CeGlBZIQOGdX2UKGgGaAloD0MIeXWOAZmScECUhpRSlGgVTUkBaBZHQJ4aZaIN3GJ1fZQoaAZoCWgPQwgijnVxW2xxQJSGlFKUaBVN8AFoFkdAnhpvaL4ve3V9lChoBmgJaA9DCME7+fRYenBAlIaUUpRoFU2dAWgWR0CeGtM/hVENdX2UKGgGaAloD0MIOQzmr5CCckCUhpRSlGgVTUkBaBZHQJ4bkmShakh1fZQoaAZoCWgPQwiZLVkVIbFwQJSGlFKUaBVL8WgWR0CeHK33pOerdX2UKGgGaAloD0MIKbAApoytb0CUhpRSlGgVTWQBaBZHQJ4dAg4ffXR1fZQoaAZoCWgPQwhmu0If7DxwQJSGlFKUaBVNtwJoFkdAnh2CIk7fYXV9lChoBmgJaA9DCNNNYhDYKm5AlIaUUpRoFU0OAWgWR0CeHguPV/c4dX2UKGgGaAloD0MIhzWVRWEIb0CUhpRSlGgVTf4BaBZHQJ4eYrRSgoR1fZQoaAZoCWgPQwiqgeZz7sBCQJSGlFKUaBVLwmgWR0CeHp2vB7/odX2UKGgGaAloD0MIcmvSbUlCcECUhpRSlGgVTSsBaBZHQJ4hV7v5P/J1fZQoaAZoCWgPQwgcQL/vnwxyQJSGlFKUaBVL8mgWR0CeIb2f029+dX2UKGgGaAloD0MIeH+8V61ob0CUhpRSlGgVS/toFkdAniIoHxBmgHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d1dbe046ccff2e0c4e97c75457bdec8b0c1aa9971b7d6f6cd1b591c101bc4ae
|
3 |
+
size 147380
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f4a954700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f4a954790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f4a954820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f4a9548b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9f4a954940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9f4a9549d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9f4a954a60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f4a954af0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9f4a954b80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f4a954c10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f4a954ca0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f4a954d30>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9f4a94dc00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682671363302661002,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD+cz0tV4g/WN39PZew4L7yzlI9LyebPAAAAAAAAAAAzXwSvXE4fDzeW3c+K9T2vQEE4z1nkzm8AAAAAAAAAAAATNK7SO+XuhJhgrdmnXCySyitOrikljYAAIA/AACAP/JEFr+rZVW+81zbupvyHbnZ3dk9InNBOgAAAAAAAIA/zaXMPfZ0T7qS4cq23x1Bsp3GqTrzees1AAAAAAAAgD/Nrfg8Ane3P1LegT7X4y69AcWHvIZahj0AAAAAAAAAAObdNT3hQIC6CwPIu2sJybhVHcC6Zx83OAAAgD8AAIA/OtVKPoTy2T76Oki9cWxAvqhsWz1Snhc8AAAAAAAAAACz3BS+FG+uO3LnwTujFwu62XVMvXoq/ToAAIA/AACAP4CtAj0UroC65XdfN4+2djJExw87R0uCtgAAgD8AAIA/gPZJveGIp7prNyI4RiREMx+w0zrybDm3AACAPwAAgD9NCam9EQo4Pr1R+z3nfou+I2+UPHpwTD0AAAAAAAAAAGaGJ7xicJU//uFpvTZ5876lL0e9ZXaXOwAAAAAAAAAAIIYcPtDopT6bJ0O+kgJ6vkRTVbwTmVI8AAAAAAAAAACakAy+7GuUPiZ+6T7nAoy+atD1Pb8wvj0AAAAAAAAAAA0dGb6usoE+ckIePmohcL5d6Rs9+siQPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxvtx+6XEcECUhpRSlIwBbJRL/YwBdJRHQJ21GakRBeJ1fZQoaAZoCWgPQwjJHqFmSJxxQJSGlFKUaBVNGgFoFkdAnbXJ/PPcBXV9lChoBmgJaA9DCOCdfHpsKnFAlIaUUpRoFU1PAWgWR0CdzARxLkCFdX2UKGgGaAloD0MIrb1PVSG7ckCUhpRSlGgVTR8BaBZHQJ3MObWmP5p1fZQoaAZoCWgPQwjSxDvAU81wQJSGlFKUaBVNZwFoFkdAncw6XBxgiXV9lChoBmgJaA9DCPCjGvY7a3FAlIaUUpRoFU27AWgWR0CdzNkD6nBMdX2UKGgGaAloD0MITDYebHGWcUCUhpRSlGgVTTEBaBZHQJ3OFIAfdRB1fZQoaAZoCWgPQwjgha3Zip5wQJSGlFKUaBVNKgFoFkdAnc6/HLida3V9lChoBmgJaA9DCDnU78LW0m1AlIaUUpRoFU1yAWgWR0Cd0HVea8YidX2UKGgGaAloD0MImGw82GKZcECUhpRSlGgVTRsBaBZHQJ3QmjM3ZPF1fZQoaAZoCWgPQwgrw7gbhEdxQJSGlFKUaBVNSQFoFkdAndD79MsYmHV9lChoBmgJaA9DCJpd91bk33BAlIaUUpRoFU0kAWgWR0Cd0Pn889wFdX2UKGgGaAloD0MI8yA9Rc4FcUCUhpRSlGgVTXUBaBZHQJ3RBnSOR1Z1fZQoaAZoCWgPQwhj0t9L4SRvQJSGlFKUaBVNhQFoFkdAndPi1iONpHV9lChoBmgJaA9DCOT5DKh3+XBAlIaUUpRoFU0uAWgWR0Cd1IVRDTjOdX2UKGgGaAloD0MIUWhZ94+sX0CUhpRSlGgVTegDaBZHQJ3VLy7PIGR1fZQoaAZoCWgPQwhNwK+RpBltQJSGlFKUaBVNowFoFkdAndWy9qUNa3V9lChoBmgJaA9DCAgcCTTYYXJAlIaUUpRoFU0TAWgWR0Cd15iEQGwBdX2UKGgGaAloD0MIo1huafWxckCUhpRSlGgVTVsBaBZHQJ3X7t3OfNB1fZQoaAZoCWgPQwjbpKKxdmpxQJSGlFKUaBVNXgFoFkdAndkIaUA1enV9lChoBmgJaA9DCMRCrWleZ3FAlIaUUpRoFU0MAWgWR0Cd2n3B55Z9dX2UKGgGaAloD0MIzLOSVjyicECUhpRSlGgVTa4BaBZHQJ3bX82rGR51fZQoaAZoCWgPQwiD+Stkbg1yQJSGlFKUaBVNNgFoFkdAnduREjPfK3V9lChoBmgJaA9DCCZTBaMSYHJAlIaUUpRoFU00AWgWR0Cd3A1+iJwbdX2UKGgGaAloD0MIQC/cubBubECUhpRSlGgVTTQBaBZHQJ3cFouf29N1fZQoaAZoCWgPQwhTW+ogLw5xQJSGlFKUaBVNCgJoFkdAndwmgi/wiXV9lChoBmgJaA9DCHE9CtcjQXBAlIaUUpRoFU1tAWgWR0Cd3WuM+/xldX2UKGgGaAloD0MI4J7nT5swcUCUhpRSlGgVTfoBaBZHQJ3dzjyWiUR1fZQoaAZoCWgPQwjABdmyvO9wQJSGlFKUaBVNswFoFkdAnd34GY8dP3V9lChoBmgJaA9DCBjONcyQBnNAlIaUUpRoFU0UAWgWR0Cd30FWXC0odX2UKGgGaAloD0MIgEkqU4zGcECUhpRSlGgVTUoBaBZHQJ3f57qptJp1fZQoaAZoCWgPQwg91LZhlHJvQJSGlFKUaBVNSQFoFkdAneBrgOz6anV9lChoBmgJaA9DCIc1lUUhb3FAlIaUUpRoFU0HAWgWR0Cd4YCO3lS1dX2UKGgGaAloD0MIq65DNWWSc0CUhpRSlGgVTZkBaBZHQJ3hp6Rhc7h1fZQoaAZoCWgPQwgAA0GAzCNwQJSGlFKUaBVNEAFoFkdAneLrvTgEU3V9lChoBmgJaA9DCPZ5jPLMA29AlIaUUpRoFU1iAWgWR0Cd42x95QgtdX2UKGgGaAloD0MIrfnxlxZ/bUCUhpRSlGgVS/toFkdAneOlafSQYHV9lChoBmgJaA9DCJlk5CysCXJAlIaUUpRoFU0XAWgWR0Cd49uKGcnWdX2UKGgGaAloD0MIFZD2P0BubkCUhpRSlGgVTQ8BaBZHQJ3kKSs8xKx1fZQoaAZoCWgPQwgQdLSqJdJuQJSGlFKUaBVNKAFoFkdAneTeCkGiYnV9lChoBmgJaA9DCDWWsDZGZHJAlIaUUpRoFU1iAWgWR0Cd5iT7VJ+VdX2UKGgGaAloD0MIiUFg5VCkcECUhpRSlGgVTSYBaBZHQJ3mgVKwpvx1fZQoaAZoCWgPQwg9tfrqan9xQJSGlFKUaBVNRgFoFkdAneciNwR5DHV9lChoBmgJaA9DCGoy420lpXJAlIaUUpRoFU0bAmgWR0Cd6OMF2V3VdX2UKGgGaAloD0MIaTaPw2D9bUCUhpRSlGgVTSEBaBZHQJ3pYIldC3R1fZQoaAZoCWgPQwip3hrY6k5yQJSGlFKUaBVL+GgWR0Cd6XJAMUh3dX2UKGgGaAloD0MI3UJXItBncECUhpRSlGgVTXgBaBZHQJ3pgnPVurJ1fZQoaAZoCWgPQwgEAp1J24JxQJSGlFKUaBVNOwFoFkdAnemd0FKTS3V9lChoBmgJaA9DCOjAcoSMI3NAlIaUUpRoFU0OAWgWR0Cd6eAzpHI7dX2UKGgGaAloD0MI7KUpApy7ckCUhpRSlGgVTTABaBZHQJ4CiAavRqp1fZQoaAZoCWgPQwjk+Qyo98hxQJSGlFKUaBVL4WgWR0CeApDK5kLAdX2UKGgGaAloD0MIWJHRAUlRbUCUhpRSlGgVTRIBaBZHQJ4CvEYO2Ap1fZQoaAZoCWgPQwh6jPLMy+txQJSGlFKUaBVNUwFoFkdAngK58rqdH3V9lChoBmgJaA9DCC9SKAsf+nFAlIaUUpRoFU1LAWgWR0CeA7ZDArQPdX2UKGgGaAloD0MINum2RO4wcECUhpRSlGgVTWIBaBZHQJ4D5nZkCmx1fZQoaAZoCWgPQwjH9IQlHlhuQJSGlFKUaBVNcgFoFkdAngQpr+Hae3V9lChoBmgJaA9DCL8K8N1m+nBAlIaUUpRoFU0TAWgWR0CeBGvCMxXXdX2UKGgGaAloD0MIfevDeqOGckCUhpRSlGgVS+NoFkdAngWHjENvwXV9lChoBmgJaA9DCE5iEFg5mnJAlIaUUpRoFU1AAmgWR0CeBgWbwz+FdX2UKGgGaAloD0MITUusjMYnbECUhpRSlGgVS/1oFkdAngZhEfDDTHV9lChoBmgJaA9DCNwtyQE7K3BAlIaUUpRoFU0oAWgWR0CeBv5s0pEydX2UKGgGaAloD0MIKuEJvf65b0CUhpRSlGgVTR4BaBZHQJ4Hn3pOerd1fZQoaAZoCWgPQwiGIAcljFFyQJSGlFKUaBVNggFoFkdAnggZHuqm0nV9lChoBmgJaA9DCDtT6LwGPXBAlIaUUpRoFU1WAWgWR0CeCKgXMyJsdX2UKGgGaAloD0MISS2UTM7ScUCUhpRSlGgVTWYBaBZHQJ4JIabWmP51fZQoaAZoCWgPQwgkRPmClvFxQJSGlFKUaBVL+WgWR0CeCaNI9TxYdX2UKGgGaAloD0MI/IugMZMpUECUhpRSlGgVTQYBaBZHQJ4J8s7MgU11fZQoaAZoCWgPQwgKD5pdNztyQJSGlFKUaBVL5mgWR0CeCnJu2qkudX2UKGgGaAloD0MI63Hfal2jcUCUhpRSlGgVS+RoFkdAngvj7Q9idHV9lChoBmgJaA9DCIxMwK/RMHFAlIaUUpRoFU0vAWgWR0CeDGwTufEodX2UKGgGaAloD0MIg92wbVGRckCUhpRSlGgVTV0BaBZHQJ4MtaPjn3d1fZQoaAZoCWgPQwg9YvTcwkNxQJSGlFKUaBVNaQFoFkdAng0JlWfbsXV9lChoBmgJaA9DCF4vTRHgRHJAlIaUUpRoFU01AWgWR0CeDSgZjx0/dX2UKGgGaAloD0MIBTI7i54NcUCUhpRSlGgVTV8BaBZHQJ4Nn3225QR1fZQoaAZoCWgPQwgTtwpiIMltQJSGlFKUaBVNHAFoFkdAng5khRqGlHV9lChoBmgJaA9DCHMPCd+75nBAlIaUUpRoFU07AWgWR0CeDuoEB8x9dX2UKGgGaAloD0MIw9SWOsjqbUCUhpRSlGgVTRgBaBZHQJ4PiLQ5WBB1fZQoaAZoCWgPQwi1G33MB9ZLQJSGlFKUaBVLw2gWR0CeECgXuVopdX2UKGgGaAloD0MI+g0TDRJTcUCUhpRSlGgVTTkBaBZHQJ4SZDqnm7t1fZQoaAZoCWgPQwhrn47HjMBtQJSGlFKUaBVNcAFoFkdAnhPFYuCf6HV9lChoBmgJaA9DCJpBfGCHJ3BAlIaUUpRoFU2WAWgWR0CeFHoBJZntdX2UKGgGaAloD0MIY4BEEyhqbUCUhpRSlGgVTYUBaBZHQJ4WlZntfHB1fZQoaAZoCWgPQwgqWONsumVvQJSGlFKUaBVNFgFoFkdAnhczc6/7BXV9lChoBmgJaA9DCDqQ9dTqC25AlIaUUpRoFU1AAWgWR0CeF5T7l7tzdX2UKGgGaAloD0MIzEV8J+bKcUCUhpRSlGgVTQUBaBZHQJ4YYoOQQtl1fZQoaAZoCWgPQwiR0JZzKXJxQJSGlFKUaBVNkQFoFkdAnhnYoJAt4HV9lChoBmgJaA9DCEPJ5NROJm1AlIaUUpRoFU14AWgWR0CeGlBZIQOGdX2UKGgGaAloD0MIeXWOAZmScECUhpRSlGgVTUkBaBZHQJ4aZaIN3GJ1fZQoaAZoCWgPQwgijnVxW2xxQJSGlFKUaBVN8AFoFkdAnhpvaL4ve3V9lChoBmgJaA9DCME7+fRYenBAlIaUUpRoFU2dAWgWR0CeGtM/hVENdX2UKGgGaAloD0MIOQzmr5CCckCUhpRSlGgVTUkBaBZHQJ4bkmShakh1fZQoaAZoCWgPQwiZLVkVIbFwQJSGlFKUaBVL8WgWR0CeHK33pOerdX2UKGgGaAloD0MIKbAApoytb0CUhpRSlGgVTWQBaBZHQJ4dAg4ffXR1fZQoaAZoCWgPQwhmu0If7DxwQJSGlFKUaBVNtwJoFkdAnh2CIk7fYXV9lChoBmgJaA9DCNNNYhDYKm5AlIaUUpRoFU0OAWgWR0CeHguPV/c4dX2UKGgGaAloD0MIhzWVRWEIb0CUhpRSlGgVTf4BaBZHQJ4eYrRSgoR1fZQoaAZoCWgPQwiqgeZz7sBCQJSGlFKUaBVLwmgWR0CeHp2vB7/odX2UKGgGaAloD0MIcmvSbUlCcECUhpRSlGgVTSsBaBZHQJ4hV7v5P/J1fZQoaAZoCWgPQwgcQL/vnwxyQJSGlFKUaBVL8mgWR0CeIb2f029+dX2UKGgGaAloD0MIeH+8V61ob0CUhpRSlGgVS/toFkdAniIoHxBmgHVlLg=="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 248,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 4,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1453234140d69e18f27aeab7730ec078bf8703442c209611f8355068363f92d9
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c42c820c7b23b3502e0f1ac3337f579fb8519fe3cc7364ab252b546ecf6408ba
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (243 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 261.45262168944225, "std_reward": 10.855627446304652, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-28T09:09:25.931568"}
|