Upload mllava/utils.py with huggingface_hub
Browse files- mllava/utils.py +188 -0
mllava/utils.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL
|
2 |
+
import torch
|
3 |
+
from .modeling_llava import LlavaForConditionalGeneration
|
4 |
+
from .processing_llava import MLlavaProcessor
|
5 |
+
# from ..conversation import conv_mllava_v1_mmtag as default_conv
|
6 |
+
from ..conversation import conv_mllava_v1 as default_conv, conv_templates
|
7 |
+
|
8 |
+
from typing import List, Tuple, Union, Tuple
|
9 |
+
|
10 |
+
def chat_mllava(
|
11 |
+
text:str,
|
12 |
+
images: List[Union[PIL.Image.Image, str]],
|
13 |
+
model:LlavaForConditionalGeneration,
|
14 |
+
processor:MLlavaProcessor,
|
15 |
+
max_input_length:int=None,
|
16 |
+
history:List[dict]=None,
|
17 |
+
**kwargs) -> Tuple[str, List[dict]]:
|
18 |
+
"""
|
19 |
+
Chat with the Mllava model
|
20 |
+
Args:
|
21 |
+
text: str, the text to be sent to the model, where <image> will be the placeholder for the image
|
22 |
+
images: List[PIL.Image.Image], the images to be sent to the model, or None
|
23 |
+
model: LlavaForConditionalGeneration, the model to be used
|
24 |
+
processor: MLlavaProcessor, the processor to be used
|
25 |
+
max_input_length: int, the maximum input length
|
26 |
+
history: List[dict], list of messages in the conversation as history. Each message is a dictionary {"role": "ASSISTANT/USER", "text": "the message"}. If None, the conversation will start from scratch
|
27 |
+
kwargs: dict, the generation kwargs
|
28 |
+
Returns:
|
29 |
+
Tuple[str, List[dict]], the generated text and the history of the conversation
|
30 |
+
|
31 |
+
|
32 |
+
"""
|
33 |
+
if "llama-3" in model.language_model.name_or_path.lower():
|
34 |
+
conv = conv_templates['llama_3']
|
35 |
+
terminators = [
|
36 |
+
processor.tokenizer.eos_token_id,
|
37 |
+
processor.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
38 |
+
]
|
39 |
+
else:
|
40 |
+
conv = default_conv
|
41 |
+
terminators = None
|
42 |
+
kwargs["eos_token_id"] = terminators
|
43 |
+
conv = conv.copy()
|
44 |
+
conv.messages = []
|
45 |
+
if history is not None:
|
46 |
+
for message in history:
|
47 |
+
assert message["role"] in conv.roles
|
48 |
+
conv.append_message(message["role"], message["text"])
|
49 |
+
if text:
|
50 |
+
assert conv.messages[-1][0] == conv.roles[1], "The last message in the history should be the assistant, if the given text is not empty"
|
51 |
+
conv.append_message(conv.roles[0], text)
|
52 |
+
conv.append_message(conv.roles[1], "")
|
53 |
+
history.append({"role": conv.roles[0], "text": text})
|
54 |
+
history.append({"role": conv.roles[1], "text": ""})
|
55 |
+
else:
|
56 |
+
if conv.messages[-1][0] == conv.roles[1]:
|
57 |
+
assert conv.messages[-1][1] == "", "No user message should be provided"
|
58 |
+
else:
|
59 |
+
assert conv.messages[-1][0] == conv.roles[0], "The last message in the history should be the user, if the given text is empty"
|
60 |
+
conv.append_message(conv.roles[0], "")
|
61 |
+
history.append({"role": conv.roles[0], "text": ""})
|
62 |
+
else:
|
63 |
+
history = []
|
64 |
+
history.append({"role": conv.roles[0], "text": text})
|
65 |
+
history.append({"role": conv.roles[1], "text": ""})
|
66 |
+
conv.append_message(conv.roles[0], text)
|
67 |
+
conv.append_message(conv.roles[1], "")
|
68 |
+
assert conv.messages[-1][0] == conv.roles[1] and conv.messages[-1][1] == "", "Format check"
|
69 |
+
assert history[-1]["role"] == conv.roles[1] and history[-1]["text"] == "", "Format check"
|
70 |
+
|
71 |
+
prompt = conv.get_prompt()
|
72 |
+
if images:
|
73 |
+
for i in range(len(images)):
|
74 |
+
if isinstance(images[i], str):
|
75 |
+
images[i] = PIL.Image.open(images[i]).convert("RGB")
|
76 |
+
|
77 |
+
inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length)
|
78 |
+
for k, v in inputs.items():
|
79 |
+
if v is not None:
|
80 |
+
if isinstance(v, torch.Tensor):
|
81 |
+
inputs[k] = v.to(model.device)
|
82 |
+
elif isinstance(v, list):
|
83 |
+
inputs[k] = [x.to(model.device) for x in v]
|
84 |
+
else:
|
85 |
+
raise ValueError(f"Invalid input type: {type(v)}")
|
86 |
+
|
87 |
+
|
88 |
+
output_ids = model.generate(**inputs, **kwargs)
|
89 |
+
output_ids = output_ids[0]
|
90 |
+
|
91 |
+
# remove the input tokens
|
92 |
+
generated_ids = output_ids[inputs["input_ids"].shape[-1]:]
|
93 |
+
generated_text = processor.decode(generated_ids, skip_special_tokens=True)
|
94 |
+
|
95 |
+
history[-1]["text"] = generated_text
|
96 |
+
|
97 |
+
return generated_text, history
|
98 |
+
|
99 |
+
|
100 |
+
def chat_mllava_stream(
|
101 |
+
text:str,
|
102 |
+
images: List[Union[PIL.Image.Image, str]],
|
103 |
+
model:LlavaForConditionalGeneration,
|
104 |
+
processor:MLlavaProcessor,
|
105 |
+
max_input_length:int=None,
|
106 |
+
history:List[dict]=None,
|
107 |
+
**kwargs) -> Tuple[str, List[dict]]:
|
108 |
+
"""
|
109 |
+
Chat with the Mllava model
|
110 |
+
Args:
|
111 |
+
text: str, the text to be sent to the model, where <image> will be the placeholder for the image
|
112 |
+
images: List[PIL.Image.Image], the images to be sent to the model, or None
|
113 |
+
model: LlavaForConditionalGeneration, the model to be used
|
114 |
+
processor: MLlavaProcessor, the processor to be used
|
115 |
+
max_input_length: int, the maximum input length
|
116 |
+
history: List[dict], list of messages in the conversation as history. Each message is a dictionary {"role": "ASSISTANT/USER", "text": "the message"}. If None, the conversation will start from scratch
|
117 |
+
kwargs: dict, the generation kwargs
|
118 |
+
Returns:
|
119 |
+
Tuple[str, List[dict]], the generated text and the history of the conversation
|
120 |
+
|
121 |
+
|
122 |
+
"""
|
123 |
+
if "llama-3" in model.language_model.name_or_path.lower():
|
124 |
+
conv = conv_templates['llama_3']
|
125 |
+
terminators = [
|
126 |
+
processor.tokenizer.eos_token_id,
|
127 |
+
processor.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
128 |
+
]
|
129 |
+
else:
|
130 |
+
conv = default_conv
|
131 |
+
terminators = None
|
132 |
+
kwargs["eos_token_id"] = terminators
|
133 |
+
conv = conv.copy()
|
134 |
+
conv.messages = []
|
135 |
+
if history is not None:
|
136 |
+
for message in history:
|
137 |
+
assert message["role"] in conv.roles
|
138 |
+
conv.append_message(message["role"], message["text"])
|
139 |
+
if text:
|
140 |
+
assert conv.messages[-1][0] == conv.roles[1], "The last message in the history should be the assistant, if the given text is not empty"
|
141 |
+
conv.append_message(conv.roles[0], text)
|
142 |
+
conv.append_message(conv.roles[1], "")
|
143 |
+
history.append({"role": conv.roles[0], "text": text})
|
144 |
+
history.append({"role": conv.roles[1], "text": ""})
|
145 |
+
else:
|
146 |
+
if conv.messages[-1][0] == conv.roles[1]:
|
147 |
+
assert conv.messages[-1][1] == "", "No user message should be provided"
|
148 |
+
else:
|
149 |
+
assert conv.messages[-1][0] == conv.roles[0], "The last message in the history should be the user, if the given text is empty"
|
150 |
+
conv.append_message(conv.roles[0], "")
|
151 |
+
history.append({"role": conv.roles[0], "text": ""})
|
152 |
+
else:
|
153 |
+
history = []
|
154 |
+
history.append({"role": conv.roles[0], "text": text})
|
155 |
+
history.append({"role": conv.roles[1], "text": ""})
|
156 |
+
conv.append_message(conv.roles[0], text)
|
157 |
+
conv.append_message(conv.roles[1], "")
|
158 |
+
assert conv.messages[-1][0] == conv.roles[1] and conv.messages[-1][1] == "", "Format check"
|
159 |
+
assert history[-1]["role"] == conv.roles[1] and history[-1]["text"] == "", "Format check"
|
160 |
+
|
161 |
+
prompt = conv.get_prompt()
|
162 |
+
if images:
|
163 |
+
for i in range(len(images)):
|
164 |
+
if isinstance(images[i], str):
|
165 |
+
images[i] = PIL.Image.open(images[i])
|
166 |
+
images[i] = images[i].convert("RGB")
|
167 |
+
|
168 |
+
inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length)
|
169 |
+
print(processor.tokenizer.decode(inputs["input_ids"][0]))
|
170 |
+
for k, v in inputs.items():
|
171 |
+
if v is not None:
|
172 |
+
if isinstance(v, torch.Tensor):
|
173 |
+
inputs[k] = v.to(model.device)
|
174 |
+
elif isinstance(v, list):
|
175 |
+
inputs[k] = [x.to(model.device) for x in v]
|
176 |
+
else:
|
177 |
+
raise ValueError(f"Invalid input type: {type(v)}")
|
178 |
+
|
179 |
+
from transformers import TextIteratorStreamer
|
180 |
+
from threading import Thread
|
181 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
182 |
+
kwargs["streamer"] = streamer
|
183 |
+
inputs.update(kwargs)
|
184 |
+
thread = Thread(target=model.generate, kwargs=inputs)
|
185 |
+
thread.start()
|
186 |
+
for _output in streamer:
|
187 |
+
history[-1]["text"] += _output
|
188 |
+
yield history[-1]["text"], history
|