Feature Extraction
Transformers
Safetensors
English
prismatic
remyx
custom_code
salma-remyx commited on
Commit
1267479
1 Parent(s): 5c79db4

Upload config

Browse files
Files changed (2) hide show
  1. config.json +39 -0
  2. configuration_prismatic.py +141 -0
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "arch_specifier": "no-align+gelu-mlp",
3
+ "architectures": [
4
+ "PrismaticForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_prismatic.PrismaticConfig"
8
+ },
9
+ "hf_llm_id": "meta-llama/Meta-Llama-3.1-8B",
10
+ "image_resize_strategy": "letterbox",
11
+ "image_sizes": [
12
+ 224,
13
+ 224
14
+ ],
15
+ "llm_backbone_id": "llama3-1-8b-pure",
16
+ "llm_max_length": 2048,
17
+ "model_type": "prismatic",
18
+ "output_projector_states": false,
19
+ "pad_to_multiple_of": 64,
20
+ "pad_token_id": 128256,
21
+ "text_config": {
22
+ "model_type": "llama",
23
+ "pad_token_id": 128256,
24
+ "torch_dtype": "bfloat16",
25
+ "vocab_size": 128320
26
+ },
27
+ "timm_model_ids": [
28
+ "vit_large_patch14_reg4_dinov2.lvd142m",
29
+ "vit_so400m_patch14_siglip_224"
30
+ ],
31
+ "timm_override_act_layers": [
32
+ null,
33
+ null
34
+ ],
35
+ "torch_dtype": "bfloat16",
36
+ "transformers_version": "4.44.0",
37
+ "use_fused_vision_backbone": true,
38
+ "vision_backbone_id": "dinosiglip-vit-so-224px"
39
+ }
configuration_prismatic.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ configuration_prismatic.py
3
+
4
+ HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`.
5
+ Default configuration specifies `siglip-224px+7b`.
6
+ """
7
+
8
+ from typing import Any, Dict, List, Optional
9
+
10
+ from transformers import PretrainedConfig
11
+ from transformers.models.auto import CONFIG_MAPPING
12
+
13
+ # === Utilities for Mapping Prismatic names to HF names ===
14
+ # fmt: off
15
+ VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = {
16
+ "clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224],
17
+
18
+ "clip-vit-l-336px": [336],
19
+ "siglip-vit-so400m-384px": [384],
20
+
21
+ "dinoclip-vit-l-336px": [336, 336],
22
+ "dinosiglip-vit-so-224px": [224, 224],
23
+ "dinosiglip-vit-so-384px": [384, 384],
24
+ }
25
+ VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = {
26
+ "clip-vit-l": ["vit_large_patch14_clip_224.openai"],
27
+ "clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"],
28
+
29
+ "dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"],
30
+ "in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"],
31
+
32
+ "siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"],
33
+ "siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"],
34
+
35
+ "dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"],
36
+ "dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"],
37
+ "dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"],
38
+ }
39
+ TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = {
40
+ "clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"],
41
+ "dinov2-vit-l": [None], "in1k-vit-l": [None],
42
+ "siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None],
43
+ "dinoclip-vit-l-336px": [None, "quick_gelu"],
44
+ "dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None]
45
+ }
46
+
47
+ LLM_BACKBONE_TO_HF_PATH = {
48
+ "llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf",
49
+ "llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf",
50
+ "llama3-1-8b-pure": "meta-llama/Meta-Llama-3.1-8B",
51
+
52
+ "vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5",
53
+
54
+ "mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1",
55
+ "mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",
56
+
57
+ "phi-2-3b": "microsoft/phi-2",
58
+ }
59
+ LLM_BACKBONE_TO_HF_METACLASS = {
60
+ "llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama",
61
+ "vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama", "llama3-1-8b-pure": "llama",
62
+
63
+ "mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral",
64
+
65
+ "phi-2-3b": "phi",
66
+ }
67
+
68
+ VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys())
69
+ VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH)
70
+ # fmt: on
71
+
72
+
73
+ class PrismaticConfig(PretrainedConfig):
74
+ model_type: str = "prismatic"
75
+ is_composition: bool = False
76
+
77
+ def __init__(
78
+ self,
79
+ vision_backbone_id: str = "siglip-vit-so400m",
80
+ llm_backbone_id: str = "vicuna-v15-7b",
81
+ arch_specifier: str = "no-align+gelu-mlp",
82
+ use_fused_vision_backbone: Optional[bool] = None,
83
+ image_resize_strategy: str = "letterbox",
84
+ text_config: Optional[Dict[str, Any]] = None,
85
+ llm_max_length: int = 2048,
86
+ pad_token_id: int = 32000,
87
+ pad_to_multiple_of: int = 64,
88
+ output_projector_states: bool = False,
89
+ **kwargs: str,
90
+ ) -> None:
91
+ if vision_backbone_id not in VALID_VISION_BACKBONES:
92
+ raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }")
93
+
94
+ if llm_backbone_id not in VALID_LLM_BACKBONES:
95
+ raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }")
96
+
97
+ # Set Prismatic Configuration Fields
98
+ self.vision_backbone_id = vision_backbone_id
99
+ self.llm_backbone_id = llm_backbone_id
100
+ self.arch_specifier = arch_specifier
101
+ self.output_projector_states = output_projector_states
102
+
103
+ # [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing
104
+ self.use_fused_vision_backbone = (
105
+ use_fused_vision_backbone
106
+ if use_fused_vision_backbone is not None
107
+ else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"])
108
+ )
109
+
110
+ self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id]
111
+ self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id]
112
+ self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id]
113
+ self.image_resize_strategy = image_resize_strategy
114
+
115
+ self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id]
116
+ self.llm_max_length = llm_max_length
117
+ self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of
118
+
119
+ # [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming!
120
+ self.text_config = (
121
+ CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config)
122
+ if text_config is not None
123
+ else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]()
124
+ )
125
+
126
+ # Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well...
127
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
128
+
129
+
130
+ class OpenVLAConfig(PrismaticConfig):
131
+ model_type: str = "openvla"
132
+
133
+ def __init__(
134
+ self,
135
+ norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None,
136
+ n_action_bins: int = 256,
137
+ **kwargs: str,
138
+ ) -> None:
139
+ self.norm_stats, self.n_action_bins = norm_stats, n_action_bins
140
+
141
+ super().__init__(**kwargs)