Upload 3 files
Browse files- all_in_one.py +116 -114
- app.py +45 -38
- test.py +2 -2
all_in_one.py
CHANGED
@@ -1,115 +1,117 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import json
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling, TrainerCallback
|
5 |
-
from datasets import Dataset
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
|
8 |
-
# Set Hugging Face token (replace with your actual token)
|
9 |
-
os.environ["HF_TOKEN"] = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" # Replace with your HF_TOKEN
|
10 |
-
|
11 |
-
# Download model and tokenizer
|
12 |
-
model_name = "Salesforce/codegen-350M-multi"
|
13 |
-
local_model_path = "./codegen_model"
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=local_model_path)
|
15 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, cache_dir=local_model_path)
|
16 |
-
|
17 |
-
# Set padding token
|
18 |
-
tokenizer.pad_token = tokenizer.eos_token
|
19 |
-
|
20 |
-
# Move model to CPU
|
21 |
-
device = torch.device("cpu")
|
22 |
-
model.to(device)
|
23 |
-
|
24 |
-
# Load custom dataset from JSONL
|
25 |
-
dataset_path = "./custom_dataset.jsonl"
|
26 |
-
data = []
|
27 |
-
with open(dataset_path, 'r', encoding='utf-8') as f:
|
28 |
-
for line in f:
|
29 |
-
data.append(json.loads(line.strip()))
|
30 |
-
dataset = Dataset.from_list(data)
|
31 |
-
|
32 |
-
# Tokenize dataset
|
33 |
-
def tokenize_function(examples):
|
34 |
-
inputs = [f"{prompt}\n{code}" for prompt, code in zip(examples["prompt"], examples["code"])]
|
35 |
-
return tokenizer(inputs, truncation=True, padding="max_length", max_length=128)
|
36 |
-
|
37 |
-
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=["prompt", "code"])
|
38 |
-
|
39 |
-
# Data collator for language modeling
|
40 |
-
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
41 |
-
|
42 |
-
# Define training arguments
|
43 |
-
training_args = TrainingArguments(
|
44 |
-
output_dir="./finetuned_codegen",
|
45 |
-
overwrite_output_dir=True,
|
46 |
-
num_train_epochs=
|
47 |
-
per_device_train_batch_size=1,
|
48 |
-
gradient_accumulation_steps=4,
|
49 |
-
save_steps=500,
|
50 |
-
save_total_limit=2,
|
51 |
-
logging_steps=
|
52 |
-
learning_rate=5e-5,
|
53 |
-
fp16=False,
|
54 |
-
no_cuda=True,
|
55 |
-
dataloader_pin_memory=False,
|
56 |
-
)
|
57 |
-
|
58 |
-
# Custom callback to store training loss
|
59 |
-
class LossCallback(TrainerCallback):
|
60 |
-
def __init__(self):
|
61 |
-
self.losses = []
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
plt.
|
90 |
-
plt.
|
91 |
-
plt.
|
92 |
-
plt.
|
93 |
-
plt.
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
115 |
print(f"Prompt: {prompt}\nGenerated Code:\n{generated_code}\n{'-'*50}")
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import json
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling, TrainerCallback
|
5 |
+
from datasets import Dataset
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
# Set Hugging Face token (replace with your actual token)
|
9 |
+
os.environ["HF_TOKEN"] = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" # Replace with your HF_TOKEN
|
10 |
+
|
11 |
+
# Download model and tokenizer
|
12 |
+
model_name = "Salesforce/codegen-350M-multi"
|
13 |
+
local_model_path = "./codegen_model"
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=local_model_path)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, cache_dir=local_model_path)
|
16 |
+
|
17 |
+
# Set padding token
|
18 |
+
tokenizer.pad_token = tokenizer.eos_token
|
19 |
+
|
20 |
+
# Move model to CPU
|
21 |
+
device = torch.device("cpu")
|
22 |
+
model.to(device)
|
23 |
+
|
24 |
+
# Load custom dataset from JSONL
|
25 |
+
dataset_path = "./custom_dataset.jsonl"
|
26 |
+
data = []
|
27 |
+
with open(dataset_path, 'r', encoding='utf-8') as f:
|
28 |
+
for line in f:
|
29 |
+
data.append(json.loads(line.strip()))
|
30 |
+
dataset = Dataset.from_list(data)
|
31 |
+
|
32 |
+
# Tokenize dataset
|
33 |
+
def tokenize_function(examples):
|
34 |
+
inputs = [f"{prompt}\n{code}" for prompt, code in zip(examples["prompt"], examples["code"])]
|
35 |
+
return tokenizer(inputs, truncation=True, padding="max_length", max_length=128)
|
36 |
+
|
37 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=["prompt", "code"])
|
38 |
+
|
39 |
+
# Data collator for language modeling
|
40 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
41 |
+
|
42 |
+
# Define training arguments
|
43 |
+
training_args = TrainingArguments(
|
44 |
+
output_dir="./finetuned_codegen",
|
45 |
+
overwrite_output_dir=True,
|
46 |
+
num_train_epochs=5,
|
47 |
+
per_device_train_batch_size=1,
|
48 |
+
gradient_accumulation_steps=4,
|
49 |
+
save_steps=500,
|
50 |
+
save_total_limit=2,
|
51 |
+
logging_steps=10, # Reduced logging steps for more frequent loss recording
|
52 |
+
learning_rate=5e-5,
|
53 |
+
fp16=False,
|
54 |
+
no_cuda=True,
|
55 |
+
dataloader_pin_memory=False,
|
56 |
+
)
|
57 |
+
|
58 |
+
# Custom callback to store training loss
|
59 |
+
class LossCallback(TrainerCallback):
|
60 |
+
def __init__(self):
|
61 |
+
self.losses = []
|
62 |
+
self.steps = []
|
63 |
+
|
64 |
+
def on_log(self, args, state, control, logs=None, **kwargs):
|
65 |
+
if logs and "loss" in logs:
|
66 |
+
self.losses.append(logs["loss"])
|
67 |
+
self.steps.append(state.global_step)
|
68 |
+
|
69 |
+
loss_callback = LossCallback()
|
70 |
+
|
71 |
+
# Initialize Trainer
|
72 |
+
trainer = Trainer(
|
73 |
+
model=model,
|
74 |
+
args=training_args,
|
75 |
+
train_dataset=tokenized_dataset,
|
76 |
+
data_collator=data_collator,
|
77 |
+
callbacks=[loss_callback],
|
78 |
+
)
|
79 |
+
|
80 |
+
# Start fine-tuning
|
81 |
+
print("Starting fine-tuning...")
|
82 |
+
trainer.train()
|
83 |
+
|
84 |
+
# Save fine-tuned model
|
85 |
+
model.save_pretrained("./finetuned_codegen")
|
86 |
+
tokenizer.save_pretrained("./finetuned_codegen")
|
87 |
+
|
88 |
+
# Plot training loss
|
89 |
+
plt.plot(loss_callback.steps, loss_callback.losses, label="Training Loss")
|
90 |
+
plt.xlabel("Steps")
|
91 |
+
plt.ylabel("Loss")
|
92 |
+
plt.title("Fine-Tuning Loss Curve")
|
93 |
+
plt.legend()
|
94 |
+
plt.savefig("./finetuned_codegen/loss_plot.png")
|
95 |
+
plt.show()
|
96 |
+
|
97 |
+
print("Fine-tuning completed. Model saved to ./finetuned_codegen. Loss plot saved to ./finetuned_codegen/loss_plot.png")
|
98 |
+
|
99 |
+
# Test fine-tuned model
|
100 |
+
print("\nTesting fine-tuned model...")
|
101 |
+
prompts = [
|
102 |
+
"Write a Python program to print 'Hello, guys how are you!'"
|
103 |
+
]
|
104 |
+
|
105 |
+
for prompt in prompts:
|
106 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
|
107 |
+
outputs = model.generate(
|
108 |
+
**inputs,
|
109 |
+
max_length=200,
|
110 |
+
num_return_sequences=1,
|
111 |
+
pad_token_id=tokenizer.eos_token_id,
|
112 |
+
do_sample=True,
|
113 |
+
temperature=0.7,
|
114 |
+
top_p=0.9
|
115 |
+
)
|
116 |
+
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
117 |
print(f"Prompt: {prompt}\nGenerated Code:\n{generated_code}\n{'-'*50}")
|
app.py
CHANGED
@@ -1,39 +1,46 @@
|
|
1 |
-
from flask import Flask, render_template, request
|
2 |
-
import torch
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
-
|
5 |
-
app = Flask(__name__)
|
6 |
-
|
7 |
-
# Load fine-tuned model and tokenizer
|
8 |
-
model_path = "./finetuned_codegen"
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
10 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32)
|
11 |
-
|
12 |
-
# Set padding token
|
13 |
-
tokenizer.pad_token = tokenizer.eos_token
|
14 |
-
|
15 |
-
# Move model to CPU
|
16 |
-
device = torch.device("cpu")
|
17 |
-
model.to(device)
|
18 |
-
|
19 |
-
@app.route("/", methods=["GET", "POST"])
|
20 |
-
def index():
|
21 |
-
generated_code = ""
|
22 |
-
prompt = ""
|
23 |
-
if request.method == "POST":
|
24 |
-
prompt = request.form["prompt"]
|
25 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
|
26 |
-
outputs = model.generate(
|
27 |
-
**inputs,
|
28 |
-
max_length=200,
|
29 |
-
num_return_sequences=1,
|
30 |
-
pad_token_id=tokenizer.eos_token_id,
|
31 |
-
do_sample=True,
|
32 |
-
temperature=0.
|
33 |
-
top_p=0.
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
app.run(debug=True)
|
|
|
1 |
+
from flask import Flask, render_template, request
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
# Load fine-tuned model and tokenizer
|
8 |
+
model_path = "./finetuned_codegen"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32)
|
11 |
+
|
12 |
+
# Set padding token
|
13 |
+
tokenizer.pad_token = tokenizer.eos_token
|
14 |
+
|
15 |
+
# Move model to CPU
|
16 |
+
device = torch.device("cpu")
|
17 |
+
model.to(device)
|
18 |
+
|
19 |
+
@app.route("/", methods=["GET", "POST"])
|
20 |
+
def index():
|
21 |
+
generated_code = ""
|
22 |
+
prompt = ""
|
23 |
+
if request.method == "POST":
|
24 |
+
prompt = request.form["prompt"]
|
25 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
|
26 |
+
outputs = model.generate(
|
27 |
+
**inputs,
|
28 |
+
max_length=200,
|
29 |
+
num_return_sequences=1,
|
30 |
+
pad_token_id=tokenizer.eos_token_id,
|
31 |
+
do_sample=True,
|
32 |
+
temperature=0.2, # Lower temperature for more precise outputs
|
33 |
+
top_p=0.95, # Adjusted for better sampling
|
34 |
+
top_k=50, # Added to focus on top-k tokens
|
35 |
+
no_repeat_ngram_size=3 # Prevent repetitive phrases
|
36 |
+
)
|
37 |
+
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
+
# Clean up output to remove prompt prefix and extra text
|
39 |
+
if generated_code.startswith(prompt):
|
40 |
+
generated_code = generated_code[len(prompt):].strip()
|
41 |
+
# Remove any trailing or redundant text
|
42 |
+
generated_code = generated_code.split("\n")[0].strip() if "\n" in generated_code else generated_code
|
43 |
+
return render_template("index.html", generated_code=generated_code, prompt=prompt)
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
app.run(debug=True)
|
test.py
CHANGED
@@ -4,7 +4,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
4 |
# Load fine-tuned model and tokenizer
|
5 |
model_path = "./finetuned_codegen"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
7 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.
|
8 |
|
9 |
# Set padding token
|
10 |
tokenizer.pad_token = tokenizer.eos_token
|
@@ -13,7 +13,7 @@ tokenizer.pad_token = tokenizer.eos_token
|
|
13 |
device = torch.device("cpu")
|
14 |
model.to(device)
|
15 |
|
16 |
-
# Test prompts
|
17 |
prompts = [
|
18 |
"Write a Python program to print 'Hello, you name or any other thing!'"
|
19 |
]
|
|
|
4 |
# Load fine-tuned model and tokenizer
|
5 |
model_path = "./finetuned_codegen"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32)
|
8 |
|
9 |
# Set padding token
|
10 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
13 |
device = torch.device("cpu")
|
14 |
model.to(device)
|
15 |
|
16 |
+
# Test prompts
|
17 |
prompts = [
|
18 |
"Write a Python program to print 'Hello, you name or any other thing!'"
|
19 |
]
|