reinhard
commited on
Commit
·
7d98610
1
Parent(s):
7cf138c
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +19 -1
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,21 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 268.42 +/- 23.40
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
---
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff87be52f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff87bdda050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff87bdda0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff87bdda170>", "_build": "<function ActorCriticPolicy._build at 0x7ff87bdda200>", "forward": "<function ActorCriticPolicy.forward at 0x7ff87bdda290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff87bdda320>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff87bdda3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff87bdda440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff87bdda4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff87bdda560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff87be22990>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652264288.1734488, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbxlLzDdTK6D8szuFdGOLMJwoY7IFlVNwAAgD8AAIA/Zh00PgLHmj+a4GE+SauRvgcsnz7Shxi9AAAAAAAAAACajji9P5Z2PhxYD75HaLO+4LMLvpmqh70AAAAAAAAAAOb/QL0XkJ0+/DdIvaRckr68rpW9gr3muwAAAAAAAAAAZnplPLerKT+/MCG+Xsm5vjXvH71Sd5q9AAAAAAAAAACzEg4+GgmRP7ISDj/Z39++rOQdPFqYJj4AAAAAAAAAACZW3z1cDyG66yKjNgA9JDLcPbg7OJXCtQAAAAAAAIA/zdBtvMM9ebovsik0jCdWMJtvHLtBUqOzAACAPwAAgD9mBc486RBzvL6uijs8rok9hHTvvIhl4DsAAIA/AACAP6ZV9r3hlmA/hEfHvd9uur7jA529C9UJvQAAAAAAAAAAM6VZvqEEQj9tj3i8gBqjvn50Db6auIA9AAAAAAAAAAAAF5u8HB4EvJpE8TufDq8846xpPTv8kL0AAIA/AACAP8rniz7rhmo/JoqEPUagpL7D8bQ+3AWFvgAAAAAAAAAAzf2XvLgj7TxOPcc8fGJ8viKpBL1gJNc9AAAAAAAAAACasUi8uHqnuyLAgzxxRxc9+fhtPCF+qTwAAIA/AACAPwDMajy2e7Y/JW3nPc0FX72uhB49NlA7PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfSQlPYzLcUCUhpRSlIwBbJRNCQGMAXSUR0C2tBOT/yXldX2UKGgGaAloD0MIijkIOlpqb0CUhpRSlGgVTU4BaBZHQLa0LBkI5YJ1fZQoaAZoCWgPQwgXoG0162JxQJSGlFKUaBVNOAFoFkdAtrQ2lZX+2nV9lChoBmgJaA9DCARws3jxbHJAlIaUUpRoFU0iAWgWR0C2tFAmAskIdX2UKGgGaAloD0MIysNCren4b0CUhpRSlGgVTRcBaBZHQLa0jkadc0N1fZQoaAZoCWgPQwjGUE60qwpxQJSGlFKUaBVNcgFoFkdAtrSiIj4YanV9lChoBmgJaA9DCKjg8IKILmVAlIaUUpRoFU3oA2gWR0C2tPN2xIJ7dX2UKGgGaAloD0MIMZQT7WqlckCUhpRSlGgVTT8BaBZHQLa08xeb/fh1fZQoaAZoCWgPQwh+b9OfPWtxQJSGlFKUaBVNMQFoFkdAtrT/NzKcNHV9lChoBmgJaA9DCCwRqP6BYHBAlIaUUpRoFU07AWgWR0C2tQJ5zHS4dX2UKGgGaAloD0MIc2cmGM6zSkCUhpRSlGgVS/RoFkdAtrUKS1Vo6HV9lChoBmgJaA9DCOy9+KL9sXBAlIaUUpRoFU0jAWgWR0C2tQv/3nIRdX2UKGgGaAloD0MImwMEc/TDcECUhpRSlGgVTQgBaBZHQLa1aqdH2AZ1fZQoaAZoCWgPQwihLedS3HpwQJSGlFKUaBVNDwFoFkdAtrVx1DBuXXV9lChoBmgJaA9DCA8om3JF3HBAlIaUUpRoFU0IAWgWR0C2tZnLaEi/dX2UKGgGaAloD0MIMgOV8S8kcECUhpRSlGgVTRABaBZHQLa2QgqEvkB1fZQoaAZoCWgPQwi2hHzQc1NwQJSGlFKUaBVNGAFoFkdAtrbEyuZCwHV9lChoBmgJaA9DCPROBdzzNG9AlIaUUpRoFU0RAWgWR0C2tupUYKpldX2UKGgGaAloD0MIiNo2jMJFckCUhpRSlGgVTQUBaBZHQLa3G6shgVp1fZQoaAZoCWgPQwjbozfcR8tuQJSGlFKUaBVNEAFoFkdAtrclWBBiTnV9lChoBmgJaA9DCF6iemugNnNAlIaUUpRoFU02AWgWR0C2tytdVvMsdX2UKGgGaAloD0MIZHjsZzFGcUCUhpRSlGgVTQIBaBZHQLa3ZwZflZJ1fZQoaAZoCWgPQwjUt8zpcllwQJSGlFKUaBVNSgFoFkdAtrdlRaX8fnV9lChoBmgJaA9DCBPx1vk3gmxAlIaUUpRoFU0lAWgWR0C2t8nfl6qsdX2UKGgGaAloD0MIYAFMGXgnckCUhpRSlGgVTS4BaBZHQLa35IxQBPt1fZQoaAZoCWgPQwi+iSE5WURyQJSGlFKUaBVNOAFoFkdAtrfw9LYf4nV9lChoBmgJaA9DCD+rzJTWknJAlIaUUpRoFU1BAWgWR0C2t/irksBidX2UKGgGaAloD0MIknajj3mzbECUhpRSlGgVTQYBaBZHQLa3+wKSgXd1fZQoaAZoCWgPQwgyHxDozL1wQJSGlFKUaBVNTwFoFkdAtrgWpqASWnV9lChoBmgJaA9DCEtzK4TVfkhAlIaUUpRoFU0BAWgWR0C2uCJC0F8pdX2UKGgGaAloD0MIXtiarfx4cUCUhpRSlGgVTR0BaBZHQLa4LUZNwit1fZQoaAZoCWgPQwgKEXAIlYZwQJSGlFKUaBVNPwFoFkdAtrkj9AHE/HV9lChoBmgJaA9DCKmfNxUpKXJAlIaUUpRoFU0pAWgWR0C2uX/BWPtEdX2UKGgGaAloD0MI393KEp1qcECUhpRSlGgVTRQBaBZHQLa6A/UvwmV1fZQoaAZoCWgPQwgE5EuooPZxQJSGlFKUaBVNLwFoFkdAtroG/GlyinV9lChoBmgJaA9DCFD+7h01SW5AlIaUUpRoFUvyaBZHQLa6GsSkCV91fZQoaAZoCWgPQwiQ9j/AWspuQJSGlFKUaBVNQgFoFkdAtro3Sro4dnV9lChoBmgJaA9DCHJPV3fs6nBAlIaUUpRoFU0yAWgWR0C2umCuZCv6dX2UKGgGaAloD0MI/1peud4tb0CUhpRSlGgVTUwBaBZHQLa6Zy5Zr591fZQoaAZoCWgPQwhBn8iTJCtwQJSGlFKUaBVNZgFoFkdAtrpsMa0hNnV9lChoBmgJaA9DCMaH2cs2tG5AlIaUUpRoFU0GAWgWR0C2uokhJRO2dX2UKGgGaAloD0MIdGIP7aP3cECUhpRSlGgVTSABaBZHQLa6vs3AEdN1fZQoaAZoCWgPQwg/48KBUHFyQJSGlFKUaBVNIQFoFkdAtrrJW6shgXV9lChoBmgJaA9DCCQofoy5ZXJAlIaUUpRoFU0vAWgWR0C2utdj5KvndX2UKGgGaAloD0MInrKarqeCc0CUhpRSlGgVTRcBaBZHQLa68EYO2Ap1fZQoaAZoCWgPQwhMx5xnrLRwQJSGlFKUaBVNJQFoFkdAtrr/fO2RaHV9lChoBmgJaA9DCNEDH4OVc21AlIaUUpRoFU0xAWgWR0C2uww5WBBidX2UKGgGaAloD0MI3uhjPmCCckCUhpRSlGgVTQ8BaBZHQLbCmYwZflZ1fZQoaAZoCWgPQwjrGi0H+rtwQJSGlFKUaBVNOgFoFkdAtsNkleF+NXV9lChoBmgJaA9DCDhJ88f0cXBAlIaUUpRoFU0aAWgWR0C2w5KN6w+udX2UKGgGaAloD0MIjx1U4jp0b0CUhpRSlGgVTRgBaBZHQLbDppFkQPJ1fZQoaAZoCWgPQwhHH/MBQdNyQJSGlFKUaBVNKQFoFkdAtsOqh24d63V9lChoBmgJaA9DCENYjSXsWnBAlIaUUpRoFU0KAWgWR0C2w7FIEr5JdX2UKGgGaAloD0MIIZOMnEWfcUCUhpRSlGgVTQABaBZHQLbDtfG+9J11fZQoaAZoCWgPQwhw6gPJ+2JyQJSGlFKUaBVNHAFoFkdAtsPZXLeQ+3V9lChoBmgJaA9DCHlcVIuIrnBAlIaUUpRoFU0rAWgWR0C2w/Y9gWrPdX2UKGgGaAloD0MIN/+vOnJNcUCUhpRSlGgVTQgBaBZHQLbD/ebd8At1fZQoaAZoCWgPQwirWWd8HwhxQJSGlFKUaBVNXAFoFkdAtsQhxZMcqHV9lChoBmgJaA9DCFoSoKZWnnJAlIaUUpRoFU0YAWgWR0C2xG4aDPGAdX2UKGgGaAloD0MI8MSsF4OMckCUhpRSlGgVTToBaBZHQLbEdlkH2RJ1fZQoaAZoCWgPQwh+dOrKpwlyQJSGlFKUaBVNQwFoFkdAtsSVuk1uSHV9lChoBmgJaA9DCFVtN8G3I3JAlIaUUpRoFU07AWgWR0C2xKy97F85dX2UKGgGaAloD0MI5bhTOtiGcECUhpRSlGgVTVEBaBZHQLbEyzRhMJx1fZQoaAZoCWgPQwig4GJFjctwQJSGlFKUaBVNSgFoFkdAtsW3W1+iJ3V9lChoBmgJaA9DCKeWrfXFCGxAlIaUUpRoFUvuaBZHQLbF1DG96C11fZQoaAZoCWgPQwhZhc0A12ByQJSGlFKUaBVL+mgWR0C2xex7E5yVdX2UKGgGaAloD0MI9ihcj8KJcUCUhpRSlGgVTQ4BaBZHQLbGCs2NvO11fZQoaAZoCWgPQwhHWb+ZmDpwQJSGlFKUaBVNBQFoFkdAtsYUkjX4CnV9lChoBmgJaA9DCJj2zf1VonJAlIaUUpRoFU0ZAWgWR0C2xjapLmITdX2UKGgGaAloD0MI+DJRhNRga0CUhpRSlGgVTVEBaBZHQLbGiZkCmuV1fZQoaAZoCWgPQwhVh9wMt2pxQJSGlFKUaBVNHgFoFkdAtsaU4tHx0HV9lChoBmgJaA9DCLWkoxwMz3FAlIaUUpRoFU0MAWgWR0C2xpmzjWCmdX2UKGgGaAloD0MIJ1DEIoarbkCUhpRSlGgVTR8BaBZHQLbGnrGza9N1fZQoaAZoCWgPQwj20D5WsDdzQJSGlFKUaBVNQAFoFkdAtsbB9qk/KXV9lChoBmgJaA9DCCfZ6nJK/XFAlIaUUpRoFU0KAWgWR0C2xuEALiMpdX2UKGgGaAloD0MIQbYsX5fxbUCUhpRSlGgVTQ4BaBZHQLbHCiyY5T91fZQoaAZoCWgPQwjFdCFWP5JyQJSGlFKUaBVNRwFoFkdAtsdhoM8YAXV9lChoBmgJaA9DCHRcjeyKp3FAlIaUUpRoFU0wAWgWR0C2x3DVMEiddX2UKGgGaAloD0MIlWBxOHPlb0CUhpRSlGgVTVEBaBZHQLbH4II4VAR1fZQoaAZoCWgPQwj5gas8gTVvQJSGlFKUaBVNCQFoFkdAtsiLr0J4S3V9lChoBmgJaA9DCGjmyTWFoXBAlIaUUpRoFU0GAWgWR0C2yI5ssQNDdX2UKGgGaAloD0MIlfQwtDpUcECUhpRSlGgVTRoBaBZHQLbIm/GVAzJ1fZQoaAZoCWgPQwjwwWuXNiNvQJSGlFKUaBVNJwFoFkdAtsimKXOW0XV9lChoBmgJaA9DCCQJwhXQKG9AlIaUUpRoFU0HAWgWR0C2yLgs5GSZdX2UKGgGaAloD0MIZavLKQHlb0CUhpRSlGgVS/hoFkdAtsj2Y0EX+HV9lChoBmgJaA9DCBzRPeva2HFAlIaUUpRoFU0OAWgWR0C2yR28ujASdX2UKGgGaAloD0MI7fKtDysCcECUhpRSlGgVTSQBaBZHQLbJc77bcoJ1fZQoaAZoCWgPQwhXYMjqVhttQJSGlFKUaBVNigFoFkdAtsmNKyv9tXV9lChoBmgJaA9DCIogzsMJVG9AlIaUUpRoFU0IAWgWR0C2ya+d9UjtdX2UKGgGaAloD0MIVFc+y3OSb0CUhpRSlGgVTSABaBZHQLbJu3PRiPR1fZQoaAZoCWgPQwgOZaiKqe5wQJSGlFKUaBVNUwFoFkdAtsna2DxsmHV9lChoBmgJaA9DCMKE0awsQXJAlIaUUpRoFU1sAWgWR0C2yknpr1ujdX2UKGgGaAloD0MIZk6XxURTcUCUhpRSlGgVTSUBaBZHQLbKYLOzIFN1fZQoaAZoCWgPQwgLXvQVJHFzQJSGlFKUaBVNVAFoFkdAtsrD3bmEG3V9lChoBmgJaA9DCBAIdCZtVG9AlIaUUpRoFUv9aBZHQLbLC/+bVjJ1fZQoaAZoCWgPQwgqHaz/c4RxQJSGlFKUaBVNDQFoFkdAtss3bqQiinV9lChoBmgJaA9DCIqw4ekV1HFAlIaUUpRoFU0HAWgWR0C2yz3IZIhAdX2UKGgGaAloD0MIByP2CWBMcUCUhpRSlGgVTR0BaBZHQLbLbXJ5miB1fZQoaAZoCWgPQwjfbHNjOo1xQJSGlFKUaBVNJQFoFkdAtsubMibDuXV9lChoBmgJaA9DCLH7juFxz3JAlIaUUpRoFU0bAWgWR0C2y8IjGDL9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef9426420500f1690688add119da2bc81d9ee74a65e34ed2e6c66ce59fa49c1d
|
3 |
+
size 144106
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff87be52f80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff87bdda050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff87bdda0e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff87bdda170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff87bdda200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff87bdda290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff87bdda320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff87bdda3b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff87bdda440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff87bdda4d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff87bdda560>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff87be22990>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652264288.1734488,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbxlLzDdTK6D8szuFdGOLMJwoY7IFlVNwAAgD8AAIA/Zh00PgLHmj+a4GE+SauRvgcsnz7Shxi9AAAAAAAAAACajji9P5Z2PhxYD75HaLO+4LMLvpmqh70AAAAAAAAAAOb/QL0XkJ0+/DdIvaRckr68rpW9gr3muwAAAAAAAAAAZnplPLerKT+/MCG+Xsm5vjXvH71Sd5q9AAAAAAAAAACzEg4+GgmRP7ISDj/Z39++rOQdPFqYJj4AAAAAAAAAACZW3z1cDyG66yKjNgA9JDLcPbg7OJXCtQAAAAAAAIA/zdBtvMM9ebovsik0jCdWMJtvHLtBUqOzAACAPwAAgD9mBc486RBzvL6uijs8rok9hHTvvIhl4DsAAIA/AACAP6ZV9r3hlmA/hEfHvd9uur7jA529C9UJvQAAAAAAAAAAM6VZvqEEQj9tj3i8gBqjvn50Db6auIA9AAAAAAAAAAAAF5u8HB4EvJpE8TufDq8846xpPTv8kL0AAIA/AACAP8rniz7rhmo/JoqEPUagpL7D8bQ+3AWFvgAAAAAAAAAAzf2XvLgj7TxOPcc8fGJ8viKpBL1gJNc9AAAAAAAAAACasUi8uHqnuyLAgzxxRxc9+fhtPCF+qTwAAIA/AACAPwDMajy2e7Y/JW3nPc0FX72uhB49NlA7PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfSQlPYzLcUCUhpRSlIwBbJRNCQGMAXSUR0C2tBOT/yXldX2UKGgGaAloD0MIijkIOlpqb0CUhpRSlGgVTU4BaBZHQLa0LBkI5YJ1fZQoaAZoCWgPQwgXoG0162JxQJSGlFKUaBVNOAFoFkdAtrQ2lZX+2nV9lChoBmgJaA9DCARws3jxbHJAlIaUUpRoFU0iAWgWR0C2tFAmAskIdX2UKGgGaAloD0MIysNCren4b0CUhpRSlGgVTRcBaBZHQLa0jkadc0N1fZQoaAZoCWgPQwjGUE60qwpxQJSGlFKUaBVNcgFoFkdAtrSiIj4YanV9lChoBmgJaA9DCKjg8IKILmVAlIaUUpRoFU3oA2gWR0C2tPN2xIJ7dX2UKGgGaAloD0MIMZQT7WqlckCUhpRSlGgVTT8BaBZHQLa08xeb/fh1fZQoaAZoCWgPQwh+b9OfPWtxQJSGlFKUaBVNMQFoFkdAtrT/NzKcNHV9lChoBmgJaA9DCCwRqP6BYHBAlIaUUpRoFU07AWgWR0C2tQJ5zHS4dX2UKGgGaAloD0MIc2cmGM6zSkCUhpRSlGgVS/RoFkdAtrUKS1Vo6HV9lChoBmgJaA9DCOy9+KL9sXBAlIaUUpRoFU0jAWgWR0C2tQv/3nIRdX2UKGgGaAloD0MImwMEc/TDcECUhpRSlGgVTQgBaBZHQLa1aqdH2AZ1fZQoaAZoCWgPQwihLedS3HpwQJSGlFKUaBVNDwFoFkdAtrVx1DBuXXV9lChoBmgJaA9DCA8om3JF3HBAlIaUUpRoFU0IAWgWR0C2tZnLaEi/dX2UKGgGaAloD0MIMgOV8S8kcECUhpRSlGgVTRABaBZHQLa2QgqEvkB1fZQoaAZoCWgPQwi2hHzQc1NwQJSGlFKUaBVNGAFoFkdAtrbEyuZCwHV9lChoBmgJaA9DCPROBdzzNG9AlIaUUpRoFU0RAWgWR0C2tupUYKpldX2UKGgGaAloD0MIiNo2jMJFckCUhpRSlGgVTQUBaBZHQLa3G6shgVp1fZQoaAZoCWgPQwjbozfcR8tuQJSGlFKUaBVNEAFoFkdAtrclWBBiTnV9lChoBmgJaA9DCF6iemugNnNAlIaUUpRoFU02AWgWR0C2tytdVvMsdX2UKGgGaAloD0MIZHjsZzFGcUCUhpRSlGgVTQIBaBZHQLa3ZwZflZJ1fZQoaAZoCWgPQwjUt8zpcllwQJSGlFKUaBVNSgFoFkdAtrdlRaX8fnV9lChoBmgJaA9DCBPx1vk3gmxAlIaUUpRoFU0lAWgWR0C2t8nfl6qsdX2UKGgGaAloD0MIYAFMGXgnckCUhpRSlGgVTS4BaBZHQLa35IxQBPt1fZQoaAZoCWgPQwi+iSE5WURyQJSGlFKUaBVNOAFoFkdAtrfw9LYf4nV9lChoBmgJaA9DCD+rzJTWknJAlIaUUpRoFU1BAWgWR0C2t/irksBidX2UKGgGaAloD0MIknajj3mzbECUhpRSlGgVTQYBaBZHQLa3+wKSgXd1fZQoaAZoCWgPQwgyHxDozL1wQJSGlFKUaBVNTwFoFkdAtrgWpqASWnV9lChoBmgJaA9DCEtzK4TVfkhAlIaUUpRoFU0BAWgWR0C2uCJC0F8pdX2UKGgGaAloD0MIXtiarfx4cUCUhpRSlGgVTR0BaBZHQLa4LUZNwit1fZQoaAZoCWgPQwgKEXAIlYZwQJSGlFKUaBVNPwFoFkdAtrkj9AHE/HV9lChoBmgJaA9DCKmfNxUpKXJAlIaUUpRoFU0pAWgWR0C2uX/BWPtEdX2UKGgGaAloD0MI393KEp1qcECUhpRSlGgVTRQBaBZHQLa6A/UvwmV1fZQoaAZoCWgPQwgE5EuooPZxQJSGlFKUaBVNLwFoFkdAtroG/GlyinV9lChoBmgJaA9DCFD+7h01SW5AlIaUUpRoFUvyaBZHQLa6GsSkCV91fZQoaAZoCWgPQwiQ9j/AWspuQJSGlFKUaBVNQgFoFkdAtro3Sro4dnV9lChoBmgJaA9DCHJPV3fs6nBAlIaUUpRoFU0yAWgWR0C2umCuZCv6dX2UKGgGaAloD0MI/1peud4tb0CUhpRSlGgVTUwBaBZHQLa6Zy5Zr591fZQoaAZoCWgPQwhBn8iTJCtwQJSGlFKUaBVNZgFoFkdAtrpsMa0hNnV9lChoBmgJaA9DCMaH2cs2tG5AlIaUUpRoFU0GAWgWR0C2uokhJRO2dX2UKGgGaAloD0MIdGIP7aP3cECUhpRSlGgVTSABaBZHQLa6vs3AEdN1fZQoaAZoCWgPQwg/48KBUHFyQJSGlFKUaBVNIQFoFkdAtrrJW6shgXV9lChoBmgJaA9DCCQofoy5ZXJAlIaUUpRoFU0vAWgWR0C2utdj5KvndX2UKGgGaAloD0MInrKarqeCc0CUhpRSlGgVTRcBaBZHQLa68EYO2Ap1fZQoaAZoCWgPQwhMx5xnrLRwQJSGlFKUaBVNJQFoFkdAtrr/fO2RaHV9lChoBmgJaA9DCNEDH4OVc21AlIaUUpRoFU0xAWgWR0C2uww5WBBidX2UKGgGaAloD0MI3uhjPmCCckCUhpRSlGgVTQ8BaBZHQLbCmYwZflZ1fZQoaAZoCWgPQwjrGi0H+rtwQJSGlFKUaBVNOgFoFkdAtsNkleF+NXV9lChoBmgJaA9DCDhJ88f0cXBAlIaUUpRoFU0aAWgWR0C2w5KN6w+udX2UKGgGaAloD0MIjx1U4jp0b0CUhpRSlGgVTRgBaBZHQLbDppFkQPJ1fZQoaAZoCWgPQwhHH/MBQdNyQJSGlFKUaBVNKQFoFkdAtsOqh24d63V9lChoBmgJaA9DCENYjSXsWnBAlIaUUpRoFU0KAWgWR0C2w7FIEr5JdX2UKGgGaAloD0MIIZOMnEWfcUCUhpRSlGgVTQABaBZHQLbDtfG+9J11fZQoaAZoCWgPQwhw6gPJ+2JyQJSGlFKUaBVNHAFoFkdAtsPZXLeQ+3V9lChoBmgJaA9DCHlcVIuIrnBAlIaUUpRoFU0rAWgWR0C2w/Y9gWrPdX2UKGgGaAloD0MIN/+vOnJNcUCUhpRSlGgVTQgBaBZHQLbD/ebd8At1fZQoaAZoCWgPQwirWWd8HwhxQJSGlFKUaBVNXAFoFkdAtsQhxZMcqHV9lChoBmgJaA9DCFoSoKZWnnJAlIaUUpRoFU0YAWgWR0C2xG4aDPGAdX2UKGgGaAloD0MI8MSsF4OMckCUhpRSlGgVTToBaBZHQLbEdlkH2RJ1fZQoaAZoCWgPQwh+dOrKpwlyQJSGlFKUaBVNQwFoFkdAtsSVuk1uSHV9lChoBmgJaA9DCFVtN8G3I3JAlIaUUpRoFU07AWgWR0C2xKy97F85dX2UKGgGaAloD0MI5bhTOtiGcECUhpRSlGgVTVEBaBZHQLbEyzRhMJx1fZQoaAZoCWgPQwig4GJFjctwQJSGlFKUaBVNSgFoFkdAtsW3W1+iJ3V9lChoBmgJaA9DCKeWrfXFCGxAlIaUUpRoFUvuaBZHQLbF1DG96C11fZQoaAZoCWgPQwhZhc0A12ByQJSGlFKUaBVL+mgWR0C2xex7E5yVdX2UKGgGaAloD0MI9ihcj8KJcUCUhpRSlGgVTQ4BaBZHQLbGCs2NvO11fZQoaAZoCWgPQwhHWb+ZmDpwQJSGlFKUaBVNBQFoFkdAtsYUkjX4CnV9lChoBmgJaA9DCJj2zf1VonJAlIaUUpRoFU0ZAWgWR0C2xjapLmITdX2UKGgGaAloD0MI+DJRhNRga0CUhpRSlGgVTVEBaBZHQLbGiZkCmuV1fZQoaAZoCWgPQwhVh9wMt2pxQJSGlFKUaBVNHgFoFkdAtsaU4tHx0HV9lChoBmgJaA9DCLWkoxwMz3FAlIaUUpRoFU0MAWgWR0C2xpmzjWCmdX2UKGgGaAloD0MIJ1DEIoarbkCUhpRSlGgVTR8BaBZHQLbGnrGza9N1fZQoaAZoCWgPQwj20D5WsDdzQJSGlFKUaBVNQAFoFkdAtsbB9qk/KXV9lChoBmgJaA9DCCfZ6nJK/XFAlIaUUpRoFU0KAWgWR0C2xuEALiMpdX2UKGgGaAloD0MIQbYsX5fxbUCUhpRSlGgVTQ4BaBZHQLbHCiyY5T91fZQoaAZoCWgPQwjFdCFWP5JyQJSGlFKUaBVNRwFoFkdAtsdhoM8YAXV9lChoBmgJaA9DCHRcjeyKp3FAlIaUUpRoFU0wAWgWR0C2x3DVMEiddX2UKGgGaAloD0MIlWBxOHPlb0CUhpRSlGgVTVEBaBZHQLbH4II4VAR1fZQoaAZoCWgPQwj5gas8gTVvQJSGlFKUaBVNCQFoFkdAtsiLr0J4S3V9lChoBmgJaA9DCGjmyTWFoXBAlIaUUpRoFU0GAWgWR0C2yI5ssQNDdX2UKGgGaAloD0MIlfQwtDpUcECUhpRSlGgVTRoBaBZHQLbIm/GVAzJ1fZQoaAZoCWgPQwjwwWuXNiNvQJSGlFKUaBVNJwFoFkdAtsimKXOW0XV9lChoBmgJaA9DCCQJwhXQKG9AlIaUUpRoFU0HAWgWR0C2yLgs5GSZdX2UKGgGaAloD0MIZavLKQHlb0CUhpRSlGgVS/hoFkdAtsj2Y0EX+HV9lChoBmgJaA9DCBzRPeva2HFAlIaUUpRoFU0OAWgWR0C2yR28ujASdX2UKGgGaAloD0MI7fKtDysCcECUhpRSlGgVTSQBaBZHQLbJc77bcoJ1fZQoaAZoCWgPQwhXYMjqVhttQJSGlFKUaBVNigFoFkdAtsmNKyv9tXV9lChoBmgJaA9DCIogzsMJVG9AlIaUUpRoFU0IAWgWR0C2ya+d9UjtdX2UKGgGaAloD0MIVFc+y3OSb0CUhpRSlGgVTSABaBZHQLbJu3PRiPR1fZQoaAZoCWgPQwgOZaiKqe5wQJSGlFKUaBVNUwFoFkdAtsna2DxsmHV9lChoBmgJaA9DCMKE0awsQXJAlIaUUpRoFU1sAWgWR0C2yknpr1ujdX2UKGgGaAloD0MIZk6XxURTcUCUhpRSlGgVTSUBaBZHQLbKYLOzIFN1fZQoaAZoCWgPQwgLXvQVJHFzQJSGlFKUaBVNVAFoFkdAtsrD3bmEG3V9lChoBmgJaA9DCBAIdCZtVG9AlIaUUpRoFUv9aBZHQLbLC/+bVjJ1fZQoaAZoCWgPQwgqHaz/c4RxQJSGlFKUaBVNDQFoFkdAtss3bqQiinV9lChoBmgJaA9DCIqw4ekV1HFAlIaUUpRoFU0HAWgWR0C2yz3IZIhAdX2UKGgGaAloD0MIByP2CWBMcUCUhpRSlGgVTR0BaBZHQLbLbXJ5miB1fZQoaAZoCWgPQwjfbHNjOo1xQJSGlFKUaBVNJQFoFkdAtsubMibDuXV9lChoBmgJaA9DCLH7juFxz3JAlIaUUpRoFU0bAWgWR0C2y8IjGDL9dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 372,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:971a5a1c44a9723d7dd9208ef372dcbb553654aa679caab45dec8deeda910b92
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cd78d14571a5b46714c958c66edff650bde2368588d47fb55ffb3f9eb2cfa4f
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf7984fc912071900ede3c051d52abd9eec51c3a2aa300948e6378852b93c33c
|
3 |
+
size 198148
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 268.42400315147995, "std_reward": 23.399956287465727, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T10:45:23.557316"}
|