ksridhar's picture
Upload model
8e8a936 verified
raw
history blame
39.7 kB
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from gymnasium import spaces
from torch import BoolTensor, FloatTensor, LongTensor, Tensor, nn
from transformers import GPTNeoModel, GPTNeoPreTrainedModel
from transformers.modeling_outputs import ModelOutput
from transformers.models.vit.modeling_vit import ViTPatchEmbeddings
import torch.nn.functional as F
from jat.configuration_jat import JatConfig
from jat.processing_jat import JatProcessor
from jat.modeling_jat import JatModel, compute_mse_loss, cyclic_expand_dim, JatOutput
from jat_regent.utils import build_index_vector, get_task_info, collect_all_data, process_row_of_obs_atari_full_without_mask, retrieve_vector, myprint, L2dist, get_dist_stats, get_images_of_retrieved_obs, get_emb_transform_model_dim, get_optional_suffix
from jat_regent.atari_utils import convert_local_to_global_action, convert_global_to_local_action
from jat_regent.eval.rl import SEEN_TASK_NAME_TO_ENV_ID, UNSEEN_TASK_NAME_TO_ENV_ID
from PIL import Image
import os
from copy import deepcopy
from pytorch_msssim import ssim
import json
def cross_entropy_from_softmax(softmax_probs, targets, reduction="mean", epsilon=1e-9):
"""
Calculate the cross entropy loss given softmax_probs and targets.
:param softmax_probs: tensor containing softmax probabilities
:param targets: tensor containing the target classes (not one-hot encoded)
:return: cross entropy loss
"""
assert len(softmax_probs.shape) == 2, "softmax_probs should be of shape (batch_size, num_classes)"
assert len(targets.shape) == 1, "targets should be of shape (batch_size,)"
# Convert targets to one-hot encoding
targets_one_hot = F.one_hot(targets, num_classes=softmax_probs.shape[1]).float() # shape: (batch_size, num_classes)
# Calculate the cross entropy loss
softmax_probs = softmax_probs.clamp(min=epsilon, max=1-epsilon) # to avoid NaNs from log(0) and instabilities from log(1)
log_softmax_probs = softmax_probs.log() # safe to take log as softmax_probs are non-zero
loss = -torch.sum(targets_one_hot * log_softmax_probs, dim=1)
if reduction == "mean":
return loss.mean()
elif reduction == "sum":
return loss.sum()
elif reduction == "none":
return loss
else:
raise ValueError("reduction should be one of 'mean', 'sum', or 'none'")
def compute_ce_loss_from_softmax(
logits: FloatTensor, labels: torch.LongTensor, mask: Optional[BoolTensor], weights: Optional[FloatTensor] = None
) -> FloatTensor:
"""
Compute the Cross Entropy (CE) loss between predicted logits and true class labels, considering valid timesteps.
Args:
logits (`FloatTensor` of shape `(batch_size, max_seq_len, [inner_size,] num_classes)`):
Predicted logits at the output of the model.
labels (`torch.LongTensor` of shape `(batch_size, max_seq_len, [inner_size,])`):
Ground truth class labels.
mask (`BoolTensor` of shape `(batch_size, max_seq_len)`, *optional*):
Boolean mask indicating valid timesteps.
weights (`FloatTensor` of shape `(batch_size, max_seq_len)`, *optional*):
Weights to be applied to the loss.
Returns:
loss (`FloatTensor` of shape `(,)`):
CE loss between predicted logits and true class labels.
"""
if mask is not None:
logits = logits[mask.bool()] # (Y, X, C)
labels = labels[mask.bool()] # (Y, X)
if weights is not None:
weights = weights[mask.bool()] # (Y,)
else:
logits = logits.flatten(end_dim=2) # (B, L, X, C) -> (B*L, X, C)
labels = labels.flatten(end_dim=1) # (B, L, X) -> (B*L, X)
if weights is not None:
weights = weights.flatten(end_dim=1) # (B, L) -> (B*L,)
loss = cross_entropy_from_softmax(logits.view(-1, logits.size(-1)), labels.view(-1), reduction="none") # (Y*X,) # we don't use F.cross_entropy here to avoid double softmax
loss = loss.view(labels.size()) # (Y, X)
loss = loss.mean(-1) # (Y,)
# Multiply the loss by the weights
if weights is not None:
loss = loss * weights # (Y,)
# Average the loss
loss = loss.mean()
return loss
def crazy_relu(x, beta):
return nn.LeakyReLU(beta)(x) - (1-beta) * nn.ReLU()(x-1)
class JatRegentModel(JatModel):
"""
Jat Regent model.
"""
def __init__(self, config: JatConfig) -> None:
super().__init__(config)
hidden_size = config.hidden_size
action_vocab_size = config.action_vocab_size
if config.ONLY_RL_TASKS:
self.single_discrete_decoder = nn.Linear(hidden_size, action_vocab_size, bias=False)
self.N = config.action_vocab_size
else:
self.N = config.vocab_size
self.multi_discrete_decoder = None # not needed
self.image_decoder = None # not needed
self.num_contexts = config.num_contexts # used in get_next_action() at evaluation in an env only
self.lamda = config.lamda # used in get_next_action() at evaluation in an env only
self.use_global_atari_actions = config.use_global_atari_actions
self.dist_multipliers = {'mujoco': config.mujoco_dist_multiplier, 'atari': config.atari_dist_multiplier}
self.dist_normalizer = config.dist_normalizer
self.atari_dist_type = config.atari_dist_type
self.use_atari_embeddings = config.use_atari_embeddings
self.finetune_num_demos = config.finetune_num_demos if hasattr(config, 'finetune_num_demos') else None
if self.use_atari_embeddings:
self.image_encoder = None
self.emb_dim_full = (512,)
# print number of parameters
num_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
myprint(f"number of parameters: {num_params / 1e6:.4f}M")
def retrieval_setup(self,
task,
dataset,
num_demos, # to retrieve from
device,
batch_size_retrieval=16, # for atari envs on gpu
nb_cores_autofaiss=8, # for vector obs envs on cpu cores
):
# setup
rew_key, attn_key, obs_key, act_key, B, obs_dim, act_dim = get_task_info(task)
extra_key = 'discrete_RandP_action_logits' if task.startswith("atari") or task.startswith("babyai") else 'continuous_RandP_actions'
optional_suffix = get_optional_suffix(task, self.atari_dist_type, self.finetune_num_demos)
mean_dist, std_dist, max_dist, p80, p85, p90, p95, p99 = get_dist_stats(task=task, optional_suffix=optional_suffix)
# get embedding model
if task.startswith("atari"):
self.emb_transform, self.emb_model, emb_dim, self.emb_model_full = get_emb_transform_model_dim(self.atari_dist_type, self.device, return_emb_weights=True)
obs_dim = emb_dim # overwrite for atari_dist_type
kwargs = {'B': B,
'obs_dim': obs_dim,
'attn_key': attn_key,
'obs_key': obs_key,
'device': device,
'task': task,
'batch_size_retrieval': batch_size_retrieval,
'nb_cores_autofaiss': nb_cores_autofaiss,
'verbose': False,
'atari_dist_type': self.atari_dist_type,
}
raw_obs_dim = obs_dim
if task.startswith("atari"): # overwrite raw_obs_dim because raw obs in atari are (4, 84, 84) and raw obs in babyai have 64 extra dim
raw_obs_dim = (4, 84, 84)
elif task.startswith("babyai"):
raw_obs_dim = (obs_dim[0]+64,)
# save
self.task = task
self.dataset = dataset
self.obs_key = obs_key
self.act_key = act_key
self.rew_key = rew_key
self.attn_key = attn_key
self.obs_dim = obs_dim
self.act_dim = act_dim
self.extra_key = extra_key
self.kwargs = kwargs
self.raw_obs_dim = raw_obs_dim
self.max_dist = max_dist
self.mean_dist = mean_dist
self.std_dist = std_dist
self.p80, self.p85, self.p90, self.p95, self.p99 = p80, p85, p90, p95, p99
self.dist_normalizer_value = {'std': std_dist, 'max': max_dist, 'p80': p80, 'p85': p85, 'p90': p90, 'p95': p95, 'p99': p99}[self.dist_normalizer]
if self.dist_normalizer_value == 0.0: self.dist_normalizer_value = 1.0
# for retrieval,
all_rows_of_obs_OG, all_attn_masks_OG, all_row_idxs, all_datarows_dict = collect_all_data(dataset, task, obs_key, num_demos, return_datarows_dict=True, atari_dist_type=self.atari_dist_type)
if task.startswith("babyai"):
# for each mission in task,
self.all_indices = {}
self.knn_index = {}
for mission_idx, mission in enumerate(all_row_idxs.keys()):
# create index, collect subset of data that we can retrieve from
myprint(('*'*50) + f'{mission=} - {mission_idx+1}/{len(all_row_idxs.keys())}')
self.all_indices[mission], self.knn_index[mission] = build_index_vector(all_rows_of_obs_OG=all_rows_of_obs_OG[mission],
all_attn_masks_OG=all_attn_masks_OG[mission],
all_row_idxs=all_row_idxs[mission],
kwargs=kwargs)
else:
# create index, collect subset of data that we can retrieve from
self.all_indices, self.knn_index = build_index_vector(all_rows_of_obs_OG=all_rows_of_obs_OG,
all_attn_masks_OG=all_attn_masks_OG,
all_row_idxs=all_row_idxs,
kwargs=kwargs)
# for retrieval inside retrieve()
self.datarows = all_datarows_dict
# # for checking if first env state is similar to retrieval episode's first states
# if task.startswith("mujoco"):
# local_path = f"dataset_jat_regent/{task}"
# with open(f"{local_path}/eps_2_rows_tokenized.json", 'r') as f:
# eps_2_rows_tokenized = json.load(f)
# eps_2_rows_tokenized = {int(k): v for k, v in eps_2_rows_tokenized.items()}
# row_idxs_of_first_state_of_demos = [eps_2_rows_tokenized[eps][0] for eps in range(num_demos)]
# self.first_states_of_demos = [np.array(dataset['train'][row_idx][obs_key][0]) for row_idx in row_idxs_of_first_state_of_demos]
# else:
# self.first_states_of_demos = None
def output_rl(
self,
transformer_outputs,
continuous_observations: Optional[FloatTensor] = None,
discrete_observations: Optional[LongTensor] = None,
image_observations: Optional[FloatTensor] = None,
continuous_actions: Optional[FloatTensor] = None,
discrete_actions: Optional[LongTensor] = None,
rewards: Optional[FloatTensor] = None,
attention_mask: Optional[BoolTensor] = None,
return_loss: bool = True,
return_dict: Optional[bool] = None,
loss_weight: Optional[FloatTensor] = None,
exp_lamda_distances: Optional[FloatTensor] = None,
continuous_RandP_actions: Optional[FloatTensor] = None,
discrete_RandP_action_logits: Optional[FloatTensor] = None,
):
hidden_states = transformer_outputs.last_hidden_state
loss, observation_loss, action_loss = None, None, None
# Observations
assert rewards is not None
observations_mask = attention_mask[:, 1::2] if attention_mask is not None else None
assert self.observation_loss_coef == 0.0, f'{self.observation_loss_coef=} should be 0.0 as we are not predicting observations!'
# warnings.warn("observation_loss_coef is 0.0, skipping memory-intensive observations prediction.")
pred_observations = None
observation_loss = 0.0
# Actions
actions_mask = attention_mask[:, ::2] if attention_mask is not None else None
if continuous_actions is not None:
act_size = continuous_actions.shape[-1]
continuous_actions = cyclic_expand_dim(continuous_actions, self.config.max_continuous_size)
continuous_RandP_actions = cyclic_expand_dim(continuous_RandP_actions, self.config.max_continuous_size)
init_pred_actions = self.continuous_decoder(hidden_states[:, ::2])
pred_actions = self.continuous_action_interpolation(init_pred_actions, exp_lamda_distances, continuous_RandP_actions, beta=0.0)
if return_loss:
action_loss = compute_mse_loss(pred_actions, continuous_actions, actions_mask, weights=loss_weight) # loss_weight is usually 50 for metaworld, 10 for mujoco (except two tasks where it is 20, 50), 1 for the rest!
pred_actions = pred_actions[..., :act_size]
elif discrete_actions is not None:
init_pred_actions = self.single_discrete_decoder(hidden_states[:, ::2])
pred_actions = self.discrete_action_interpolation(init_pred_actions, exp_lamda_distances, discrete_RandP_action_logits, beta=0.0)
if return_loss:
action_loss = compute_ce_loss_from_softmax(pred_actions, discrete_actions, actions_mask, weights=loss_weight)
# Return output
if return_loss:
loss = self.observation_loss_coef * observation_loss + self.action_loss_coef * action_loss
if not return_dict:
output = (pred_observations, pred_actions) + transformer_outputs[1:]
return ((loss, observation_loss, action_loss) + output) if loss is not None else output
return JatOutput(
loss=loss,
observation_loss=observation_loss,
action_loss=action_loss,
pred_observations=pred_observations,
pred_actions=pred_actions,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def shifted_crazy_relu(self, x, beta):
return 2 * crazy_relu(0.5*(x+1), beta) - 1
def continuous_action_interpolation(self, init_pred_actions, exp_lamda_distances, continuous_RandP_actions, beta=0.0):
batch_size, max_seq_len, act_size = init_pred_actions.shape
assert (init_pred_actions.shape == (batch_size, max_seq_len, act_size) and
exp_lamda_distances.shape == (batch_size, max_seq_len, 1) and
continuous_RandP_actions.shape == (batch_size, max_seq_len, act_size)), f'{init_pred_actions.shape=}, {exp_lamda_distances.shape=}, {continuous_RandP_actions.shape=}, {(batch_size, max_seq_len, act_size)=}'
""" MCNN interpolation (https://arxiv.org/abs/2310.06171) """
act_fn = self.shifted_crazy_relu
final_actions = exp_lamda_distances * continuous_RandP_actions + 10.0 * (1 - exp_lamda_distances) * act_fn(init_pred_actions, beta=beta)
return final_actions
def discrete_action_interpolation(self, init_pred_actions, exp_lamda_distances, discrete_RandP_action_logits, beta=0.0):
batch_size, max_seq_len, action_vocab_size = init_pred_actions.shape
assert (init_pred_actions.shape == (batch_size, max_seq_len, action_vocab_size) and
exp_lamda_distances.shape == (batch_size, max_seq_len, 1) and
discrete_RandP_action_logits.shape == (batch_size, max_seq_len, action_vocab_size)), f'{init_pred_actions.shape=}, {exp_lamda_distances.shape=}, {discrete_RandP_action_logits.shape=}, {(batch_size, max_seq_len, action_vocab_size)=}'
""" MCNN-like interpolation """
# print(f'{torch.round(discrete_RandP_action_logits[:, -1],decimals=2)=}')
# print(f'{torch.round(F.softmax(init_pred_actions, dim=-1)[:, -1],decimals=2)=}')
# print(f'{torch.round(exp_lamda_distances[:, -1],decimals=2)=}')
# print(f'first term: {torch.round((exp_lamda_distances * discrete_RandP_action_logits)[:, -1],decimals=2)}')
# print(f'second term: {torch.round(((1 - exp_lamda_distances) * F.softmax(init_pred_actions, dim=-1))[:, -1],decimals=2)}')
final_actions = exp_lamda_distances * discrete_RandP_action_logits + (1 - exp_lamda_distances) * F.softmax(init_pred_actions, dim=-1)
return final_actions
# Copied the forward function from the Parent class with the addition of the last 3 args in the input args and in output_rl args
def forward(
self,
input_ids: Optional[LongTensor] = None,
pixel_values: Optional[FloatTensor] = None,
continuous_observations: Optional[FloatTensor] = None,
discrete_observations: Optional[LongTensor] = None,
image_observations: Optional[FloatTensor] = None,
continuous_actions: Optional[FloatTensor] = None,
discrete_actions: Optional[LongTensor] = None,
rewards: Optional[FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[FloatTensor]]] = None,
attention_mask: Optional[BoolTensor] = None,
token_type_ids: Optional[LongTensor] = None,
position_ids: Optional[LongTensor] = None,
return_loss: bool = True,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
loss_weight: Optional[FloatTensor] = None,
exp_lamda_distances: Optional[FloatTensor] = None,
continuous_RandP_actions: Optional[FloatTensor] = None,
discrete_RandP_action_logits: Optional[FloatTensor] = None,
) -> JatOutput:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Textual tasks
if input_ids is not None or pixel_values is not None:
inputs_embeds, attention_mask = self.embed_textual(input_ids, pixel_values, attention_mask)
# RL tasks
elif (
continuous_observations is not None or discrete_observations is not None or image_observations is not None
):
inputs_embeds, attention_mask = self.embed_rl(
continuous_observations,
discrete_observations,
image_observations,
continuous_actions,
discrete_actions,
rewards,
attention_mask,
)
else:
raise ValueError("Input not provided.")
# Pass through transformer
transformer_outputs = self.transformer(
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if input_ids is not None or pixel_values is not None:
return self.output_textual(transformer_outputs, input_ids, attention_mask, return_loss, return_dict)
else:
return self.output_rl(
transformer_outputs,
continuous_observations,
discrete_observations,
image_observations,
continuous_actions,
discrete_actions,
rewards,
attention_mask,
return_loss,
return_dict,
loss_weight,
exp_lamda_distances,
continuous_RandP_actions,
discrete_RandP_action_logits,
)
def reset_rl(self):
self.steps = 0
def process(
self,
processor: JatProcessor,
continuous_observation: Optional[List[float]] = None,
discrete_observation: Optional[List[int]] = None,
text_observation: Optional[str] = None,
image_observation: Optional[np.ndarray] = None,
action_space: Union[spaces.Box, spaces.Discrete] = None,
reward: Optional[float] = None,
deterministic: bool = True,
context_window: Optional[int] = None,
):
# Get the maximum sequence length
max_length = self.config.max_position_embeddings // 2
# Get the maximum sequence length
### see script/train_jat.py > L161.
### None ==> value set to 512 in jat/processing_jat.py > L354 and then // 2 in L355.
### weirdly, the value in script/eval_jat.py is set as 256 so it will be // 2 again in L355.
# max_length = 64 if self.task.startswith("atari") else None
# Convert everything to lists
def to_list(x):
return x.tolist() if isinstance(x, np.ndarray) else x
continuous_observation = to_list(continuous_observation)
discrete_observation = to_list(discrete_observation)
# get babyai mission within task
if self.task.startswith("babyai"):
mission = deepcopy(text_observation)
assert mission in self.knn_index.keys(), f'{mission=} should be in {self.knn_index.keys()=}'
# Add a fake action to the end of the sequence
if isinstance(action_space, spaces.Box):
fake_continuous_action = [0.0 for _ in range(action_space.shape[0])]
fake_discrete_action = None
elif isinstance(action_space, spaces.Discrete):
fake_continuous_action = None
fake_discrete_action = 0
continuous_observations = [continuous_observation] if continuous_observation is not None else None
discrete_observations = [discrete_observation] if discrete_observation is not None else None
text_observations = [text_observation] if text_observation is not None else None
image_observations = [image_observation] if image_observation is not None else None
continuous_actions = [fake_continuous_action] if fake_continuous_action is not None else None
discrete_actions = [fake_discrete_action] if fake_discrete_action is not None else None
rewards = [reward] if reward is not None else [0.0]
# Add the batch dimension
continuous_observations = [continuous_observations] if continuous_observations is not None else None
discrete_observations = [discrete_observations] if discrete_observations is not None else None
text_observations = [text_observations] if text_observations is not None else None
image_observations = [image_observations] if image_observations is not None else None
continuous_actions = [continuous_actions] if continuous_actions is not None else None
discrete_actions = [discrete_actions] if discrete_actions is not None else None
rewards = [rewards]
# Process the inputs
processed = processor(
continuous_observations=continuous_observations,
discrete_observations=discrete_observations,
text_observations=text_observations,
image_observations=image_observations,
continuous_actions=continuous_actions,
discrete_actions=discrete_actions,
rewards=rewards,
truncation=True,
truncation_side="left",
max_length=max_length,
return_tensors="pt",
)
assert (((self.act_key == 'continuous_actions' and processed[self.act_key].shape == (1, 1, self.act_dim)) or # zeros
(self.act_key == 'discrete_actions' and processed[self.act_key].shape == (1, 1))) and
processed[self.obs_key].shape == (1, 1, *self.raw_obs_dim) and
processed[self.rew_key].shape == (1, 1)), f'{processed[self.act_key].shape=}, {processed[self.obs_key].shape=}, {processed[self.rew_key].shape=}, {self.act_dim=}, {self.raw_obs_dim=}'
# save babyai mission
if self.task.startswith("babyai"):
processed['mission'] = mission
# save action_space and deterministic
processed['action_space'] = action_space
processed['deterministic'] = deterministic
return processed
def retrieve(
self,
all_processed: List[dict],
num_to_retrieve: int,
):
self.steps += 1
# Set num envs
num_envs = len(all_processed)
# Get obs from processed and make batch
row_of_obs = [all_processed[idx][self.obs_key][0].numpy() for idx in range(num_envs)]
row_of_obs = np.concatenate(row_of_obs)
assert row_of_obs.shape == (num_envs, *self.raw_obs_dim) and isinstance(row_of_obs, np.ndarray)
if self.task.startswith("atari"):
row_of_obs = process_row_of_obs_atari_full_without_mask(row_of_obs)
row_of_obs = torch.from_numpy(row_of_obs).to(self.device)
with torch.no_grad():
row_of_obs = self.emb_model(self.emb_transform(row_of_obs)).cpu().numpy()
elif self.task.startswith("babyai"):
row_of_obs = row_of_obs[:, :148] # removing last 64 text tokens
assert row_of_obs.shape == (num_envs, *self.obs_dim) and isinstance(row_of_obs, np.ndarray)
# Retrieve indices
if self.task.startswith("babyai"):
retrieved_indices = []
for idx in range(num_envs):
mission = all_processed[idx]['mission']
retrieved_indices_mission = retrieve_vector(row_of_obs=row_of_obs[idx:idx+1],
knn_index=self.knn_index[mission],
all_indices=self.all_indices[mission],
num_to_retrieve=num_to_retrieve,
kwargs=self.kwargs)
retrieved_indices.append(retrieved_indices_mission) # appending (1, 1, 2)
retrieved_indices = np.concatenate(retrieved_indices, axis=0)
assert retrieved_indices.shape == (num_envs, num_to_retrieve, 2)
else:
retrieved_indices = retrieve_vector(row_of_obs=row_of_obs,
knn_index=self.knn_index,
all_indices=self.all_indices,
num_to_retrieve=num_to_retrieve,
kwargs=self.kwargs)
# Return action
all_retrieved_act = []
all_retrieved_obs = []
all_retrieved_rew = []
for all_row_idx_and_i in retrieved_indices:
all_retrieved_act.append([])
all_retrieved_obs.append([])
all_retrieved_rew.append([])
for row_idx, i in all_row_idx_and_i:
datarow = self.datarows[int(row_idx)]
temp_a = datarow[self.act_key][int(i)]
if self.task.startswith("atari") and self.use_global_atari_actions:
temp_a = convert_local_to_global_action( temp_a, self.task )
all_retrieved_act[-1].append(temp_a)
all_retrieved_obs[-1].append(datarow[self.obs_key][int(i)])
all_retrieved_rew[-1].append(datarow[self.rew_key][int(i)])
return all_retrieved_act, all_retrieved_obs, all_retrieved_rew, row_of_obs
def get_distances(
self,
all_retrieved_obs: np.ndarray,
all_processed: List[dict],
query_obs: np.ndarray,
):
num_envs = len(all_processed)
# Process retrieved obs like in retrieve
num_contexts = all_retrieved_obs.shape[1] + 1
assert all_retrieved_obs.shape == (num_envs, num_contexts - 1, *self.raw_obs_dim) and isinstance(all_retrieved_obs, np.ndarray)
if self.task.startswith("atari"):
all_retrieved_obs = all_retrieved_obs.reshape(num_envs * (num_contexts - 1), *self.raw_obs_dim)
all_retrieved_obs = process_row_of_obs_atari_full_without_mask(all_retrieved_obs)
all_retrieved_obs = torch.from_numpy(all_retrieved_obs).to(self.device)
with torch.no_grad():
all_retrieved_obs = self.emb_model(self.emb_transform(all_retrieved_obs)).cpu().numpy()
all_retrieved_obs = all_retrieved_obs.reshape(num_envs, num_contexts - 1, *self.obs_dim)
elif self.task.startswith("babyai"):
all_retrieved_obs = all_retrieved_obs[:, :, :148]
assert all_retrieved_obs.shape == (num_envs, num_contexts - 1, *self.obs_dim) and isinstance(all_retrieved_obs, np.ndarray)
# Compute distances
all_distances = []
for idx in range(num_envs):
first_state = all_retrieved_obs[idx, 0:1]
distances = [0.0]
for i in range(1, num_contexts - 1):
curr_state = all_retrieved_obs[idx, i:i+1]
dist = L2dist(first_state, curr_state)
distances.append(dist)
curr_state = query_obs[idx:idx+1]
dist = L2dist(first_state, curr_state)
distances.append(dist)
all_distances.append(distances)
all_distances = np.array(all_distances)
assert all_distances.shape == (num_envs, num_contexts), f'{all_distances.shape=}, {num_envs=}, {num_contexts=}'
# distances: divide by std
all_distances = all_distances / self.dist_normalizer_value
if self.task.startswith("mujoco"):
all_distances = all_distances * self.dist_multipliers['mujoco']
elif self.task.startswith("atari"):
all_distances = all_distances * self.dist_multipliers['atari']
print(f'{self.dist_normalizer_value=}')
print(f'{all_distances=}')
return all_distances
@torch.no_grad()
def get_next_action(
self,
all_processed: List[dict],
return_retrieved_obs: bool = False,
):
num_envs = len(all_processed)
num_contexts = self.num_contexts
# Get the retrieved data
all_retrieved_act, all_retrieved_obs, all_retrieved_rew, row_of_obs = self.retrieve(all_processed, num_to_retrieve=num_contexts - 1)
if return_retrieved_obs:
all_retrieved_images = get_images_of_retrieved_obs(deepcopy(all_retrieved_obs), self.task)
# Get the distances
all_retrieved_obs = np.stack(all_retrieved_obs).astype(np.int32 if self.obs_key == 'discrete_observations' else np.float32)
assert all_retrieved_obs.shape == (num_envs, num_contexts - 1, *self.raw_obs_dim), f'{all_retrieved_obs.shape=}, {num_envs=}, {self.raw_obs_dim=}, {num_contexts-1=}'
all_distances = self.get_distances(all_retrieved_obs=all_retrieved_obs, all_processed=all_processed, query_obs=row_of_obs)
# Batch retrieved data
all_retrieved_act = np.stack(all_retrieved_act).astype(np.int32 if self.act_key == 'discrete_actions' else np.float32)
all_retrieved_rew = np.stack(all_retrieved_rew).astype(np.float32)
assert (((self.act_key == 'continuous_actions' and all_retrieved_act.shape == (num_envs, num_contexts - 1, self.act_dim)) or
(self.act_key == 'discrete_actions' and all_retrieved_act.shape == (num_envs, num_contexts - 1))) and
all_retrieved_rew.shape == (num_envs, num_contexts - 1)), f'{all_retrieved_act.shape=}, {all_retrieved_rew.shape=}, {num_envs=}, {self.act_dim=}, {self.raw_obs_dim=}, {num_contexts-1=}'
# Batch query data (already tensors) # query data is already int32/float32 after processing
all_query_act = torch.stack([all_processed[idx][self.act_key][0] for idx in range(num_envs)])
all_query_obs = np.stack([all_processed[idx][self.obs_key][0] for idx in range(num_envs)])
all_query_rew = torch.stack([all_processed[idx][self.rew_key][0] for idx in range(num_envs)])
assert (((self.act_key == 'continuous_actions' and all_query_act.shape == (num_envs, 1, self.act_dim)) or
(self.act_key == 'discrete_actions' and all_query_act.shape == (num_envs, 1))) and
all_query_obs.shape == (num_envs, 1, *self.raw_obs_dim) and
all_query_rew.shape == (num_envs, 1)), f'{all_query_act.shape=}, {all_query_obs.shape=}, {all_query_rew.shape=}, {num_envs=}, {self.act_dim=}, {self.raw_obs_dim=}'
# Collect attn
attn_weights = np.ones((num_envs, num_contexts)).astype(np.float32)
# Compute exp_lamda_distances
exp_lamda_distances = np.exp(-self.lamda * all_distances)[:, :, np.newaxis]
assert exp_lamda_distances.shape == (num_envs, num_contexts, 1), f'{exp_lamda_distances.shape=}, {num_envs=}, {num_contexts=}'
# Compute extra_key
all_extra_key = []
for idx in range(num_envs):
RandP_action = all_retrieved_act[idx, 0]
if self.extra_key == 'continuous_RandP_actions':
extra_key = [RandP_action for _ in range(num_contexts)]
elif self.extra_key == 'discrete_RandP_action_logits':
extra_key = []
for d in all_distances[idx]:
d = min(1.0, max(0.0, d))
curr_logits = [1.0/self.N * d for _ in range(self.N)]
curr_logits[RandP_action] = (1.0 + (self.N - 1.0)*(1.0 - d))/self.N
extra_key.append(curr_logits)
extra_key = np.stack(extra_key)
all_extra_key.append(extra_key)
all_extra_key = np.stack(all_extra_key).astype(np.float32)
if self.extra_key == 'continuous_RandP_actions':
assert all_extra_key.shape == (num_envs, num_contexts, self.act_dim), f'{all_extra_key.shape=}, {num_envs=}, {num_contexts=}, {self.act_dim=}'
elif self.extra_key == 'discrete_RandP_action_logits':
assert all_extra_key.shape == (num_envs, num_contexts, self.N), f'{all_extra_key.shape=}, {num_envs=}, {num_contexts=}, {self.N=}'
# Tensorify
all_retrieved_act = torch.from_numpy(all_retrieved_act)
all_retrieved_rew = torch.from_numpy(all_retrieved_rew)
attn_weights = torch.from_numpy(attn_weights).to(self.device)
exp_lamda_distances = torch.from_numpy(exp_lamda_distances).to(self.device)
all_extra_key = torch.from_numpy(all_extra_key).to(self.device)
# Concat retrieved and query batches
all_act = torch.cat([all_retrieved_act, all_query_act], dim=1).to(self.device)
all_obs = np.concatenate([all_retrieved_obs, all_query_obs], axis=1)
if self.use_atari_embeddings and self.task.startswith("atari"):
all_obs = all_obs.reshape(num_envs * num_contexts, *self.raw_obs_dim)
all_obs = process_row_of_obs_atari_full_without_mask(all_obs)
all_obs = torch.from_numpy(all_obs).to(self.device)
with torch.no_grad():
all_obs = self.emb_model_full(self.emb_transform(all_obs)).reshape(num_envs, num_contexts, *self.emb_dim_full)
else:
all_obs = torch.from_numpy(all_obs).to(self.device)
all_rew = torch.cat([all_retrieved_rew, all_query_rew], dim=1).to(self.device)
# Collect action_space, deterministic from all_processed
all_action_space = [all_processed[idx]['action_space'] for idx in range(num_envs)]
all_deterministic = [all_processed[idx]['deterministic'] for idx in range(num_envs)]
## assert that all action_space and deterministic are same for all envs
assert all([action_space == all_action_space[0] for action_space in all_action_space]), f'{all_action_space=}'
assert all([deterministic == all_deterministic[0] for deterministic in all_deterministic]), f'{all_deterministic=}'
## then just use first one!
action_space = all_action_space[0]
deterministic = all_deterministic[0]
# Forward pass
if self.use_atari_embeddings and self.task.startswith("atari"):
final_obs_key = 'continuous_observations'
else:
final_obs_key = self.obs_key
outputs = self.forward(**{final_obs_key: all_obs,
self.act_key: all_act,
self.rew_key: all_rew,
self.attn_key: attn_weights,
'exp_lamda_distances': exp_lamda_distances,
self.extra_key: all_extra_key,
}, return_loss=False)
# Return the predicted action
if self.act_key == 'continuous_actions':
self.last_continuous_action = outputs.pred_actions[:, -1].cpu().numpy()
assert self.last_continuous_action.shape == (num_envs, self.act_dim), f'{self.last_continuous_action.shape=}, {num_envs=}, {self.act_dim=}'
myprint(f'L2dist(RandP action, Pred action): {[L2dist(all_retrieved_act[idx, 0].cpu().numpy(), self.last_continuous_action[idx]) for idx in range(num_envs)]}')
self.last_continuous_action = list(self.last_continuous_action) # list of arrays
return self.last_continuous_action if not return_retrieved_obs else (self.last_continuous_action, all_retrieved_images)
elif self.act_key == 'discrete_actions':
act_n = self.config.action_vocab_size if (self.task.startswith('atari') and self.use_global_atari_actions) else action_space.n
logits = outputs.pred_actions[:, -1, : act_n]
assert logits.shape == (num_envs, act_n), f'{logits.shape=}, {num_envs=}, {act_n=}'
if deterministic:
# myprint(f'{all_extra_key[:, -1, : action_space.n]=}')
# myprint(f'{logits=}')
self.last_discrete_action = logits.argmax(dim=-1, keepdim=True).cpu().numpy().reshape(-1)
else: # sample
self.last_discrete_action = torch.multinomial(logits.softmax(dim=-1), num_samples=1).cpu().numpy().reshape(-1)
assert self.last_discrete_action.shape == (num_envs,), f'{self.last_discrete_action.shape=}, {num_envs=}'
self.last_discrete_action = list(self.last_discrete_action) # list of ints
myprint(f'RandP action: {all_retrieved_act[:, 0].cpu().numpy().tolist()} vs Pred action: {self.last_discrete_action}')
if self.task.startswith("atari") and self.use_global_atari_actions:
self.last_discrete_action = [convert_global_to_local_action(a, self.task) for a in self.last_discrete_action]
myprint(f'[IN LOCAL ACTION] RandP action: {[convert_global_to_local_action(a, self.task) for a in all_retrieved_act[:, 0].cpu().numpy().tolist()]} vs Pred action: {self.last_discrete_action}')
myprint(f'[IN LOCAL ACTION] diff: {[convert_global_to_local_action(a, self.task) - b for a, b in zip(all_retrieved_act[:, 0].cpu().numpy().tolist(), self.last_discrete_action)]}')
return self.last_discrete_action if not return_retrieved_obs else (self.last_discrete_action, all_retrieved_images)
JatRegentModel.register_for_auto_class("AutoModelForCausalLM")