Upload config
Browse files- README.md +199 -0
- config.json +58 -0
- configuration_jat.py +134 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ONLY_RL_TASKS": true,
|
3 |
+
"action_loss_coef": 1.0,
|
4 |
+
"action_vocab_size": 18,
|
5 |
+
"activation_function": "gelu_new",
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"attention_layers": [
|
8 |
+
"global",
|
9 |
+
"local",
|
10 |
+
"global",
|
11 |
+
"local",
|
12 |
+
"global",
|
13 |
+
"local",
|
14 |
+
"global",
|
15 |
+
"local",
|
16 |
+
"global",
|
17 |
+
"local",
|
18 |
+
"global",
|
19 |
+
"local"
|
20 |
+
],
|
21 |
+
"attention_types": [
|
22 |
+
[
|
23 |
+
[
|
24 |
+
"global",
|
25 |
+
"local"
|
26 |
+
],
|
27 |
+
6
|
28 |
+
]
|
29 |
+
],
|
30 |
+
"auto_map": {
|
31 |
+
"AutoConfig": "configuration_jat.JatConfig"
|
32 |
+
},
|
33 |
+
"bos_token_id": 50256,
|
34 |
+
"classifier_dropout": 0.1,
|
35 |
+
"embed_dropout": 0.0,
|
36 |
+
"eos_token_id": 50256,
|
37 |
+
"hidden_size": 1024,
|
38 |
+
"image_size": 224,
|
39 |
+
"initializer_range": 0.02,
|
40 |
+
"intermediate_size": null,
|
41 |
+
"layer_norm_epsilon": 1e-05,
|
42 |
+
"max_continuous_size": 513,
|
43 |
+
"max_discrete_value": 212,
|
44 |
+
"max_position_embeddings": 40,
|
45 |
+
"model_type": "jat",
|
46 |
+
"num_channels": 3,
|
47 |
+
"num_contexts": 20,
|
48 |
+
"num_heads": 16,
|
49 |
+
"num_layers": 12,
|
50 |
+
"observation_loss_coef": 0.0,
|
51 |
+
"patch_size": 16,
|
52 |
+
"resid_dropout": 0.0,
|
53 |
+
"tokenizer_class": "GPT2TokenizerFast",
|
54 |
+
"transformers_version": "4.41.2",
|
55 |
+
"use_cache": true,
|
56 |
+
"vocab_size": 50257,
|
57 |
+
"window_size": 256
|
58 |
+
}
|
configuration_jat.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPTNeoConfig
|
2 |
+
|
3 |
+
|
4 |
+
class JatConfig(GPTNeoConfig):
|
5 |
+
r"""
|
6 |
+
This is the configuration class to store the configuration of a [`JatModel`]. It is used to instantiate a Jat
|
7 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with
|
8 |
+
the defaults will yield a similar configuration to that of the ... (TODO)
|
9 |
+
|
10 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
11 |
+
documentation from [`PretrainedConfig`] for more information.
|
12 |
+
|
13 |
+
|
14 |
+
Args:
|
15 |
+
vocab_size (`int`, *optional*, defaults to 50257):
|
16 |
+
Vocabulary size of the GPT Neo model. Defines the number of different tokens that can be represented by the
|
17 |
+
`inputs_ids` passed when calling [`GPTNeoModel`]. Vocabulary size of the model. Defines the different
|
18 |
+
tokens that can be represented by the *inputs_ids* passed to the forward method of [`GPTNeoModel`].
|
19 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
20 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
21 |
+
just in case (e.g., 512 or 1024 or 2048).
|
22 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
23 |
+
Dimensionality of the encoder layers and the pooler layer.
|
24 |
+
num_layers (`int`, *optional*, defaults to 24):
|
25 |
+
Number of hidden layers in the Transformer encoder.
|
26 |
+
attention_types (`List`, *optional*, defaults to `[[["global", "local"], 12]]`):
|
27 |
+
The type of attention for each layer in a `List` of the following format `[[["attention_type"],
|
28 |
+
num_layerss]]` e.g. for a 24 layer model `[[["global"], 24]]` or `[[["global", "local"], 12]]` Choose the
|
29 |
+
value of `attention_type` from `["global", "local"]`
|
30 |
+
num_heads (`int`, *optional*, defaults to 16):
|
31 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
32 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
33 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
34 |
+
window_size (`int`, *optional*, defaults to 256):
|
35 |
+
The size of the sliding window for local attention.
|
36 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
37 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
38 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
39 |
+
resid_dropout (`float`, *optional*, defaults to 0.0):
|
40 |
+
Residual dropout used in the attention pattern.
|
41 |
+
embed_dropout (`float`, *optional*, defaults to 0.0):
|
42 |
+
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
43 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
44 |
+
The dropout ratio for the attention probabilities.
|
45 |
+
classifier_dropout (`float`, *optional*, defaults to 0.1):
|
46 |
+
Argument used when doing token classification, used in the model [`GPTNeoForTokenClassification`]. The
|
47 |
+
dropout ratio for the hidden layer.
|
48 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
49 |
+
The epsilon used by the layer normalization layers.
|
50 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
51 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
52 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
53 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
54 |
+
relevant if `config.is_decoder=True`.
|
55 |
+
bos_token_id (`int`, *optional*, defaults to 50256):
|
56 |
+
The id of the beginning of sentence token in the vocabulary.
|
57 |
+
eos_token_id (`int`, *optional*, defaults to 50256):
|
58 |
+
The id of the end of sentence token in the vocabulary.
|
59 |
+
max_continuous_size (`int`, *optional*, default to 376):
|
60 |
+
The maximum size of the continuous values.
|
61 |
+
max_discrete_value (`int`, *optional*, default to 18):
|
62 |
+
The maximum value of the discrete values.
|
63 |
+
image_size (`int`, *optional*, defaults to 224):
|
64 |
+
The size (resolution) of each image.
|
65 |
+
patch_size (`int`, *optional*, defaults to 16):
|
66 |
+
The size (resolution) of each patch.
|
67 |
+
observation_loss_coef (`float`, *optional*, defaults to 0.005):
|
68 |
+
The coefficient for the observation loss. When set to 0.0, the observation is not even predicted.
|
69 |
+
action_loss_coef (`float`, *optional*, defaults to 0.995):
|
70 |
+
The coefficient for the action loss.
|
71 |
+
"""
|
72 |
+
|
73 |
+
model_type = "jat"
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
vocab_size=50257,
|
78 |
+
max_position_embeddings=2048,
|
79 |
+
hidden_size=2048,
|
80 |
+
num_layers=24,
|
81 |
+
attention_types=[[["global", "local"], 12]],
|
82 |
+
num_heads=16,
|
83 |
+
intermediate_size=None,
|
84 |
+
window_size=256,
|
85 |
+
activation_function="gelu_new",
|
86 |
+
resid_dropout=0.0,
|
87 |
+
embed_dropout=0.0,
|
88 |
+
attention_dropout=0.0,
|
89 |
+
classifier_dropout=0.1,
|
90 |
+
layer_norm_epsilon=1e-5,
|
91 |
+
initializer_range=0.02,
|
92 |
+
use_cache=True,
|
93 |
+
bos_token_id=50256,
|
94 |
+
eos_token_id=50256,
|
95 |
+
max_continuous_size=377,
|
96 |
+
max_discrete_value=18,
|
97 |
+
image_size=224,
|
98 |
+
num_channels=3,
|
99 |
+
patch_size=16,
|
100 |
+
observation_loss_coef=0.005,
|
101 |
+
action_loss_coef=0.995,
|
102 |
+
**kwargs,
|
103 |
+
):
|
104 |
+
super().__init__(
|
105 |
+
vocab_size,
|
106 |
+
max_position_embeddings,
|
107 |
+
hidden_size,
|
108 |
+
num_layers,
|
109 |
+
attention_types,
|
110 |
+
num_heads,
|
111 |
+
intermediate_size,
|
112 |
+
window_size,
|
113 |
+
activation_function,
|
114 |
+
resid_dropout,
|
115 |
+
embed_dropout,
|
116 |
+
attention_dropout,
|
117 |
+
classifier_dropout,
|
118 |
+
layer_norm_epsilon,
|
119 |
+
initializer_range,
|
120 |
+
use_cache,
|
121 |
+
bos_token_id,
|
122 |
+
eos_token_id,
|
123 |
+
**kwargs,
|
124 |
+
)
|
125 |
+
self.max_continuous_size = max_continuous_size
|
126 |
+
self.max_discrete_value = max_discrete_value
|
127 |
+
self.image_size = image_size
|
128 |
+
self.num_channels = num_channels
|
129 |
+
self.patch_size = patch_size
|
130 |
+
self.observation_loss_coef = observation_loss_coef
|
131 |
+
self.action_loss_coef = action_loss_coef
|
132 |
+
|
133 |
+
|
134 |
+
JatConfig.register_for_auto_class()
|