ksridhar commited on
Commit
26e3879
1 Parent(s): 16aad3b

Upload config

Browse files
Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +58 -0
  3. configuration_jat.py +134 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "ONLY_RL_TASKS": true,
3
+ "action_loss_coef": 1.0,
4
+ "action_vocab_size": 18,
5
+ "activation_function": "gelu_new",
6
+ "attention_dropout": 0.0,
7
+ "attention_layers": [
8
+ "global",
9
+ "local",
10
+ "global",
11
+ "local",
12
+ "global",
13
+ "local",
14
+ "global",
15
+ "local",
16
+ "global",
17
+ "local",
18
+ "global",
19
+ "local"
20
+ ],
21
+ "attention_types": [
22
+ [
23
+ [
24
+ "global",
25
+ "local"
26
+ ],
27
+ 6
28
+ ]
29
+ ],
30
+ "auto_map": {
31
+ "AutoConfig": "configuration_jat.JatConfig"
32
+ },
33
+ "bos_token_id": 50256,
34
+ "classifier_dropout": 0.1,
35
+ "embed_dropout": 0.0,
36
+ "eos_token_id": 50256,
37
+ "hidden_size": 1024,
38
+ "image_size": 224,
39
+ "initializer_range": 0.02,
40
+ "intermediate_size": null,
41
+ "layer_norm_epsilon": 1e-05,
42
+ "max_continuous_size": 513,
43
+ "max_discrete_value": 212,
44
+ "max_position_embeddings": 40,
45
+ "model_type": "jat",
46
+ "num_channels": 3,
47
+ "num_contexts": 20,
48
+ "num_heads": 16,
49
+ "num_layers": 12,
50
+ "observation_loss_coef": 0.0,
51
+ "patch_size": 16,
52
+ "resid_dropout": 0.0,
53
+ "tokenizer_class": "GPT2TokenizerFast",
54
+ "transformers_version": "4.41.2",
55
+ "use_cache": true,
56
+ "vocab_size": 50257,
57
+ "window_size": 256
58
+ }
configuration_jat.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import GPTNeoConfig
2
+
3
+
4
+ class JatConfig(GPTNeoConfig):
5
+ r"""
6
+ This is the configuration class to store the configuration of a [`JatModel`]. It is used to instantiate a Jat
7
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with
8
+ the defaults will yield a similar configuration to that of the ... (TODO)
9
+
10
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
11
+ documentation from [`PretrainedConfig`] for more information.
12
+
13
+
14
+ Args:
15
+ vocab_size (`int`, *optional*, defaults to 50257):
16
+ Vocabulary size of the GPT Neo model. Defines the number of different tokens that can be represented by the
17
+ `inputs_ids` passed when calling [`GPTNeoModel`]. Vocabulary size of the model. Defines the different
18
+ tokens that can be represented by the *inputs_ids* passed to the forward method of [`GPTNeoModel`].
19
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
20
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
21
+ just in case (e.g., 512 or 1024 or 2048).
22
+ hidden_size (`int`, *optional*, defaults to 2048):
23
+ Dimensionality of the encoder layers and the pooler layer.
24
+ num_layers (`int`, *optional*, defaults to 24):
25
+ Number of hidden layers in the Transformer encoder.
26
+ attention_types (`List`, *optional*, defaults to `[[["global", "local"], 12]]`):
27
+ The type of attention for each layer in a `List` of the following format `[[["attention_type"],
28
+ num_layerss]]` e.g. for a 24 layer model `[[["global"], 24]]` or `[[["global", "local"], 12]]` Choose the
29
+ value of `attention_type` from `["global", "local"]`
30
+ num_heads (`int`, *optional*, defaults to 16):
31
+ Number of attention heads for each attention layer in the Transformer encoder.
32
+ intermediate_size (`int`, *optional*, defaults to 8192):
33
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
34
+ window_size (`int`, *optional*, defaults to 256):
35
+ The size of the sliding window for local attention.
36
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu_new"`):
37
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
38
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
39
+ resid_dropout (`float`, *optional*, defaults to 0.0):
40
+ Residual dropout used in the attention pattern.
41
+ embed_dropout (`float`, *optional*, defaults to 0.0):
42
+ The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
43
+ attention_dropout (`float`, *optional*, defaults to 0.0):
44
+ The dropout ratio for the attention probabilities.
45
+ classifier_dropout (`float`, *optional*, defaults to 0.1):
46
+ Argument used when doing token classification, used in the model [`GPTNeoForTokenClassification`]. The
47
+ dropout ratio for the hidden layer.
48
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
49
+ The epsilon used by the layer normalization layers.
50
+ initializer_range (`float`, *optional*, defaults to 0.02):
51
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
52
+ use_cache (`bool`, *optional*, defaults to `True`):
53
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
54
+ relevant if `config.is_decoder=True`.
55
+ bos_token_id (`int`, *optional*, defaults to 50256):
56
+ The id of the beginning of sentence token in the vocabulary.
57
+ eos_token_id (`int`, *optional*, defaults to 50256):
58
+ The id of the end of sentence token in the vocabulary.
59
+ max_continuous_size (`int`, *optional*, default to 376):
60
+ The maximum size of the continuous values.
61
+ max_discrete_value (`int`, *optional*, default to 18):
62
+ The maximum value of the discrete values.
63
+ image_size (`int`, *optional*, defaults to 224):
64
+ The size (resolution) of each image.
65
+ patch_size (`int`, *optional*, defaults to 16):
66
+ The size (resolution) of each patch.
67
+ observation_loss_coef (`float`, *optional*, defaults to 0.005):
68
+ The coefficient for the observation loss. When set to 0.0, the observation is not even predicted.
69
+ action_loss_coef (`float`, *optional*, defaults to 0.995):
70
+ The coefficient for the action loss.
71
+ """
72
+
73
+ model_type = "jat"
74
+
75
+ def __init__(
76
+ self,
77
+ vocab_size=50257,
78
+ max_position_embeddings=2048,
79
+ hidden_size=2048,
80
+ num_layers=24,
81
+ attention_types=[[["global", "local"], 12]],
82
+ num_heads=16,
83
+ intermediate_size=None,
84
+ window_size=256,
85
+ activation_function="gelu_new",
86
+ resid_dropout=0.0,
87
+ embed_dropout=0.0,
88
+ attention_dropout=0.0,
89
+ classifier_dropout=0.1,
90
+ layer_norm_epsilon=1e-5,
91
+ initializer_range=0.02,
92
+ use_cache=True,
93
+ bos_token_id=50256,
94
+ eos_token_id=50256,
95
+ max_continuous_size=377,
96
+ max_discrete_value=18,
97
+ image_size=224,
98
+ num_channels=3,
99
+ patch_size=16,
100
+ observation_loss_coef=0.005,
101
+ action_loss_coef=0.995,
102
+ **kwargs,
103
+ ):
104
+ super().__init__(
105
+ vocab_size,
106
+ max_position_embeddings,
107
+ hidden_size,
108
+ num_layers,
109
+ attention_types,
110
+ num_heads,
111
+ intermediate_size,
112
+ window_size,
113
+ activation_function,
114
+ resid_dropout,
115
+ embed_dropout,
116
+ attention_dropout,
117
+ classifier_dropout,
118
+ layer_norm_epsilon,
119
+ initializer_range,
120
+ use_cache,
121
+ bos_token_id,
122
+ eos_token_id,
123
+ **kwargs,
124
+ )
125
+ self.max_continuous_size = max_continuous_size
126
+ self.max_discrete_value = max_discrete_value
127
+ self.image_size = image_size
128
+ self.num_channels = num_channels
129
+ self.patch_size = patch_size
130
+ self.observation_loss_coef = observation_loss_coef
131
+ self.action_loss_coef = action_loss_coef
132
+
133
+
134
+ JatConfig.register_for_auto_class()