Sentence Similarity
sentence-transformers
Safetensors
English
modernbert
biencoder
text-classification
sentence-pair-classification
semantic-similarity
semantic-search
retrieval
reranking
Generated from Trainer
dataset_size:1451941
loss:MultipleNegativesRankingLoss
Eval Results
text-embeddings-inference
Add new SentenceTransformer model
Browse files- README.md +368 -22
- model.safetensors +1 -1
README.md
CHANGED
@@ -87,28 +87,28 @@ model-index:
|
|
87 |
type: test
|
88 |
metrics:
|
89 |
- type: cosine_accuracy
|
90 |
-
value: 0.
|
91 |
name: Cosine Accuracy
|
92 |
- type: cosine_accuracy_threshold
|
93 |
-
value: 0.
|
94 |
name: Cosine Accuracy Threshold
|
95 |
- type: cosine_f1
|
96 |
-
value: 0.
|
97 |
name: Cosine F1
|
98 |
- type: cosine_f1_threshold
|
99 |
-
value: 0.
|
100 |
name: Cosine F1 Threshold
|
101 |
- type: cosine_precision
|
102 |
-
value: 0.
|
103 |
name: Cosine Precision
|
104 |
- type: cosine_recall
|
105 |
-
value: 0.
|
106 |
name: Cosine Recall
|
107 |
- type: cosine_ap
|
108 |
-
value: 0.
|
109 |
name: Cosine Ap
|
110 |
- type: cosine_mcc
|
111 |
-
value: 0.
|
112 |
name: Cosine Mcc
|
113 |
---
|
114 |
|
@@ -173,9 +173,9 @@ print(embeddings.shape)
|
|
173 |
# Get the similarity scores for the embeddings
|
174 |
similarities = model.similarity(embeddings, embeddings)
|
175 |
print(similarities)
|
176 |
-
# tensor([[0.
|
177 |
-
# [0.
|
178 |
-
# [0.
|
179 |
```
|
180 |
|
181 |
<!--
|
@@ -213,14 +213,14 @@ You can finetune this model on your own dataset.
|
|
213 |
|
214 |
| Metric | Value |
|
215 |
|:--------------------------|:-----------|
|
216 |
-
| cosine_accuracy | 0.
|
217 |
-
| cosine_accuracy_threshold | 0.
|
218 |
-
| cosine_f1 | 0.
|
219 |
-
| cosine_f1_threshold | 0.
|
220 |
-
| cosine_precision | 0.
|
221 |
-
| cosine_recall | 0.
|
222 |
-
| **cosine_ap** | **0.
|
223 |
-
| cosine_mcc | 0.
|
224 |
|
225 |
<!--
|
226 |
## Bias, Risks and Limitations
|
@@ -290,11 +290,357 @@ You can finetune this model on your own dataset.
|
|
290 |
}
|
291 |
```
|
292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
### Training Logs
|
294 |
-
|
295 |
-
|:-----:|:----:|:--------------:|
|
296 |
-
| -1 | -1 | 0.6476 |
|
297 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
### Framework Versions
|
300 |
- Python: 3.12.3
|
|
|
87 |
type: test
|
88 |
metrics:
|
89 |
- type: cosine_accuracy
|
90 |
+
value: 0.7276245142774221
|
91 |
name: Cosine Accuracy
|
92 |
- type: cosine_accuracy_threshold
|
93 |
+
value: 0.8017503619194031
|
94 |
name: Cosine Accuracy Threshold
|
95 |
- type: cosine_f1
|
96 |
+
value: 0.723032161181329
|
97 |
name: Cosine F1
|
98 |
- type: cosine_f1_threshold
|
99 |
+
value: 0.7345461845397949
|
100 |
name: Cosine F1 Threshold
|
101 |
- type: cosine_precision
|
102 |
+
value: 0.6233076217703221
|
103 |
name: Cosine Precision
|
104 |
- type: cosine_recall
|
105 |
+
value: 0.8607448789571694
|
106 |
name: Cosine Recall
|
107 |
- type: cosine_ap
|
108 |
+
value: 0.7251364855292874
|
109 |
name: Cosine Ap
|
110 |
- type: cosine_mcc
|
111 |
+
value: 0.4684913821533736
|
112 |
name: Cosine Mcc
|
113 |
---
|
114 |
|
|
|
173 |
# Get the similarity scores for the embeddings
|
174 |
similarities = model.similarity(embeddings, embeddings)
|
175 |
print(similarities)
|
176 |
+
# tensor([[0.9961, 0.9961, 0.1250],
|
177 |
+
# [0.9961, 0.9961, 0.1162],
|
178 |
+
# [0.1250, 0.1162, 1.0078]], dtype=torch.bfloat16)
|
179 |
```
|
180 |
|
181 |
<!--
|
|
|
213 |
|
214 |
| Metric | Value |
|
215 |
|:--------------------------|:-----------|
|
216 |
+
| cosine_accuracy | 0.7276 |
|
217 |
+
| cosine_accuracy_threshold | 0.8018 |
|
218 |
+
| cosine_f1 | 0.723 |
|
219 |
+
| cosine_f1_threshold | 0.7345 |
|
220 |
+
| cosine_precision | 0.6233 |
|
221 |
+
| cosine_recall | 0.8607 |
|
222 |
+
| **cosine_ap** | **0.7251** |
|
223 |
+
| cosine_mcc | 0.4685 |
|
224 |
|
225 |
<!--
|
226 |
## Bias, Risks and Limitations
|
|
|
290 |
}
|
291 |
```
|
292 |
|
293 |
+
### Training Hyperparameters
|
294 |
+
#### Non-Default Hyperparameters
|
295 |
+
|
296 |
+
- `eval_strategy`: steps
|
297 |
+
- `per_device_train_batch_size`: 100
|
298 |
+
- `per_device_eval_batch_size`: 100
|
299 |
+
- `learning_rate`: 0.0001
|
300 |
+
- `adam_beta2`: 0.98
|
301 |
+
- `adam_epsilon`: 1e-06
|
302 |
+
- `max_steps`: 200000
|
303 |
+
- `warmup_steps`: 1000
|
304 |
+
- `load_best_model_at_end`: True
|
305 |
+
- `optim`: adamw_torch
|
306 |
+
- `ddp_find_unused_parameters`: False
|
307 |
+
- `push_to_hub`: True
|
308 |
+
- `hub_model_id`: redis/langcache-embed-v3
|
309 |
+
- `batch_sampler`: no_duplicates
|
310 |
+
|
311 |
+
#### All Hyperparameters
|
312 |
+
<details><summary>Click to expand</summary>
|
313 |
+
|
314 |
+
- `overwrite_output_dir`: False
|
315 |
+
- `do_predict`: False
|
316 |
+
- `eval_strategy`: steps
|
317 |
+
- `prediction_loss_only`: True
|
318 |
+
- `per_device_train_batch_size`: 100
|
319 |
+
- `per_device_eval_batch_size`: 100
|
320 |
+
- `per_gpu_train_batch_size`: None
|
321 |
+
- `per_gpu_eval_batch_size`: None
|
322 |
+
- `gradient_accumulation_steps`: 1
|
323 |
+
- `eval_accumulation_steps`: None
|
324 |
+
- `torch_empty_cache_steps`: None
|
325 |
+
- `learning_rate`: 0.0001
|
326 |
+
- `weight_decay`: 0.0
|
327 |
+
- `adam_beta1`: 0.9
|
328 |
+
- `adam_beta2`: 0.98
|
329 |
+
- `adam_epsilon`: 1e-06
|
330 |
+
- `max_grad_norm`: 1.0
|
331 |
+
- `num_train_epochs`: 3.0
|
332 |
+
- `max_steps`: 200000
|
333 |
+
- `lr_scheduler_type`: linear
|
334 |
+
- `lr_scheduler_kwargs`: {}
|
335 |
+
- `warmup_ratio`: 0.0
|
336 |
+
- `warmup_steps`: 1000
|
337 |
+
- `log_level`: passive
|
338 |
+
- `log_level_replica`: warning
|
339 |
+
- `log_on_each_node`: True
|
340 |
+
- `logging_nan_inf_filter`: True
|
341 |
+
- `save_safetensors`: True
|
342 |
+
- `save_on_each_node`: False
|
343 |
+
- `save_only_model`: False
|
344 |
+
- `restore_callback_states_from_checkpoint`: False
|
345 |
+
- `no_cuda`: False
|
346 |
+
- `use_cpu`: False
|
347 |
+
- `use_mps_device`: False
|
348 |
+
- `seed`: 42
|
349 |
+
- `data_seed`: None
|
350 |
+
- `jit_mode_eval`: False
|
351 |
+
- `use_ipex`: False
|
352 |
+
- `bf16`: False
|
353 |
+
- `fp16`: False
|
354 |
+
- `fp16_opt_level`: O1
|
355 |
+
- `half_precision_backend`: auto
|
356 |
+
- `bf16_full_eval`: False
|
357 |
+
- `fp16_full_eval`: False
|
358 |
+
- `tf32`: None
|
359 |
+
- `local_rank`: 0
|
360 |
+
- `ddp_backend`: None
|
361 |
+
- `tpu_num_cores`: None
|
362 |
+
- `tpu_metrics_debug`: False
|
363 |
+
- `debug`: []
|
364 |
+
- `dataloader_drop_last`: False
|
365 |
+
- `dataloader_num_workers`: 0
|
366 |
+
- `dataloader_prefetch_factor`: None
|
367 |
+
- `past_index`: -1
|
368 |
+
- `disable_tqdm`: False
|
369 |
+
- `remove_unused_columns`: True
|
370 |
+
- `label_names`: None
|
371 |
+
- `load_best_model_at_end`: True
|
372 |
+
- `ignore_data_skip`: False
|
373 |
+
- `fsdp`: []
|
374 |
+
- `fsdp_min_num_params`: 0
|
375 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
376 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
377 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
378 |
+
- `parallelism_config`: None
|
379 |
+
- `deepspeed`: None
|
380 |
+
- `label_smoothing_factor`: 0.0
|
381 |
+
- `optim`: adamw_torch
|
382 |
+
- `optim_args`: None
|
383 |
+
- `adafactor`: False
|
384 |
+
- `group_by_length`: False
|
385 |
+
- `length_column_name`: length
|
386 |
+
- `ddp_find_unused_parameters`: False
|
387 |
+
- `ddp_bucket_cap_mb`: None
|
388 |
+
- `ddp_broadcast_buffers`: False
|
389 |
+
- `dataloader_pin_memory`: True
|
390 |
+
- `dataloader_persistent_workers`: False
|
391 |
+
- `skip_memory_metrics`: True
|
392 |
+
- `use_legacy_prediction_loop`: False
|
393 |
+
- `push_to_hub`: True
|
394 |
+
- `resume_from_checkpoint`: None
|
395 |
+
- `hub_model_id`: redis/langcache-embed-v3
|
396 |
+
- `hub_strategy`: every_save
|
397 |
+
- `hub_private_repo`: None
|
398 |
+
- `hub_always_push`: False
|
399 |
+
- `hub_revision`: None
|
400 |
+
- `gradient_checkpointing`: False
|
401 |
+
- `gradient_checkpointing_kwargs`: None
|
402 |
+
- `include_inputs_for_metrics`: False
|
403 |
+
- `include_for_metrics`: []
|
404 |
+
- `eval_do_concat_batches`: True
|
405 |
+
- `fp16_backend`: auto
|
406 |
+
- `push_to_hub_model_id`: None
|
407 |
+
- `push_to_hub_organization`: None
|
408 |
+
- `mp_parameters`:
|
409 |
+
- `auto_find_batch_size`: False
|
410 |
+
- `full_determinism`: False
|
411 |
+
- `torchdynamo`: None
|
412 |
+
- `ray_scope`: last
|
413 |
+
- `ddp_timeout`: 1800
|
414 |
+
- `torch_compile`: False
|
415 |
+
- `torch_compile_backend`: None
|
416 |
+
- `torch_compile_mode`: None
|
417 |
+
- `include_tokens_per_second`: False
|
418 |
+
- `include_num_input_tokens_seen`: False
|
419 |
+
- `neftune_noise_alpha`: None
|
420 |
+
- `optim_target_modules`: None
|
421 |
+
- `batch_eval_metrics`: False
|
422 |
+
- `eval_on_start`: False
|
423 |
+
- `use_liger_kernel`: False
|
424 |
+
- `liger_kernel_config`: None
|
425 |
+
- `eval_use_gather_object`: False
|
426 |
+
- `average_tokens_across_devices`: False
|
427 |
+
- `prompts`: None
|
428 |
+
- `batch_sampler`: no_duplicates
|
429 |
+
- `multi_dataset_batch_sampler`: proportional
|
430 |
+
- `router_mapping`: {}
|
431 |
+
- `learning_rate_mapping`: {}
|
432 |
+
|
433 |
+
</details>
|
434 |
+
|
435 |
### Training Logs
|
436 |
+
<details><summary>Click to expand</summary>
|
|
|
|
|
437 |
|
438 |
+
| Epoch | Step | Training Loss | Validation Loss | test_cosine_ap |
|
439 |
+
|:----------:|:--------:|:-------------:|:---------------:|:--------------:|
|
440 |
+
| -1 | -1 | - | - | 0.6476 |
|
441 |
+
| 0.2067 | 1000 | 0.0165 | 0.1033 | 0.6705 |
|
442 |
+
| 0.4133 | 2000 | 0.0067 | 0.0977 | 0.6597 |
|
443 |
+
| 0.6200 | 3000 | 0.0061 | 0.0955 | 0.6670 |
|
444 |
+
| **0.8266** | **4000** | **0.0063** | **0.0945** | **0.6678** |
|
445 |
+
| 1.0333 | 5000 | 0.0059 | 0.0950 | 0.6786 |
|
446 |
+
| 1.2399 | 6000 | 0.0054 | 0.0880 | 0.6779 |
|
447 |
+
| 1.4466 | 7000 | 0.0054 | 0.0876 | 0.6791 |
|
448 |
+
| 1.6532 | 8000 | 0.0054 | 0.0833 | 0.6652 |
|
449 |
+
| 1.8599 | 9000 | 0.0051 | 0.0821 | 0.6760 |
|
450 |
+
| 2.0665 | 10000 | 0.0048 | 0.0818 | 0.6767 |
|
451 |
+
| 2.2732 | 11000 | 0.0044 | 0.0796 | 0.6732 |
|
452 |
+
| 2.4799 | 12000 | 0.0048 | 0.0790 | 0.6717 |
|
453 |
+
| 2.6865 | 13000 | 0.0043 | 0.0804 | 0.6748 |
|
454 |
+
| 2.8932 | 14000 | 0.0048 | 0.0790 | 0.6745 |
|
455 |
+
| 3.0998 | 15000 | 0.0033 | 0.0775 | 0.6693 |
|
456 |
+
| 3.3065 | 16000 | 0.0044 | 0.0769 | 0.6767 |
|
457 |
+
| 3.5131 | 17000 | 0.005 | 0.0770 | 0.6768 |
|
458 |
+
| 3.7198 | 18000 | 0.0044 | 0.0760 | 0.6761 |
|
459 |
+
| 3.9264 | 19000 | 0.0039 | 0.0741 | 0.6799 |
|
460 |
+
| 4.1331 | 20000 | 0.0044 | 0.0750 | 0.6888 |
|
461 |
+
| 4.3397 | 21000 | 0.0041 | 0.0751 | 0.7019 |
|
462 |
+
| 4.5464 | 22000 | 0.0044 | 0.0707 | 0.7009 |
|
463 |
+
| 4.7530 | 23000 | 0.0039 | 0.0726 | 0.7041 |
|
464 |
+
| 4.9597 | 24000 | 0.0042 | 0.0712 | 0.6971 |
|
465 |
+
| 5.1664 | 25000 | 0.0038 | 0.0718 | 0.6978 |
|
466 |
+
| 5.3730 | 26000 | 0.004 | 0.0703 | 0.7035 |
|
467 |
+
| 5.5797 | 27000 | 0.004 | 0.0706 | 0.6976 |
|
468 |
+
| 5.7863 | 28000 | 0.0042 | 0.0699 | 0.6964 |
|
469 |
+
| 5.9930 | 29000 | 0.0044 | 0.0699 | 0.6911 |
|
470 |
+
| 6.1996 | 30000 | 0.0035 | 0.0702 | 0.6791 |
|
471 |
+
| 6.4063 | 31000 | 0.0035 | 0.0690 | 0.6955 |
|
472 |
+
| 6.6129 | 32000 | 0.0037 | 0.0693 | 0.6917 |
|
473 |
+
| 6.8196 | 33000 | 0.0035 | 0.0691 | 0.6972 |
|
474 |
+
| 7.0262 | 34000 | 0.004 | 0.0695 | 0.7083 |
|
475 |
+
| 7.2329 | 35000 | 0.0037 | 0.0690 | 0.6994 |
|
476 |
+
| 7.4396 | 36000 | 0.0036 | 0.0670 | 0.7060 |
|
477 |
+
| 7.6462 | 37000 | 0.0042 | 0.0682 | 0.6963 |
|
478 |
+
| 7.8529 | 38000 | 0.0037 | 0.0678 | 0.7049 |
|
479 |
+
| 8.0595 | 39000 | 0.0039 | 0.0682 | 0.7014 |
|
480 |
+
| 8.2662 | 40000 | 0.0039 | 0.0684 | 0.6969 |
|
481 |
+
| 8.4728 | 41000 | 0.0041 | 0.0677 | 0.7007 |
|
482 |
+
| 8.6795 | 42000 | 0.0038 | 0.0671 | 0.7126 |
|
483 |
+
| 8.8861 | 43000 | 0.0035 | 0.0684 | 0.7150 |
|
484 |
+
| 9.0928 | 44000 | 0.0035 | 0.0671 | 0.7043 |
|
485 |
+
| 9.2994 | 45000 | 0.0038 | 0.0681 | 0.7021 |
|
486 |
+
| 9.5061 | 46000 | 0.0038 | 0.0687 | 0.7129 |
|
487 |
+
| 9.7128 | 47000 | 0.0038 | 0.0684 | 0.7215 |
|
488 |
+
| 9.9194 | 48000 | 0.0039 | 0.0668 | 0.7179 |
|
489 |
+
| 10.1261 | 49000 | 0.0031 | 0.0661 | 0.7129 |
|
490 |
+
| 10.3327 | 50000 | 0.0033 | 0.0664 | 0.7119 |
|
491 |
+
| 10.5394 | 51000 | 0.0034 | 0.0668 | 0.7162 |
|
492 |
+
| 10.7460 | 52000 | 0.0038 | 0.0666 | 0.7181 |
|
493 |
+
| 10.9527 | 53000 | 0.0034 | 0.0674 | 0.7046 |
|
494 |
+
| 11.1593 | 54000 | 0.0034 | 0.0657 | 0.7100 |
|
495 |
+
| 11.3660 | 55000 | 0.0035 | 0.0656 | 0.7163 |
|
496 |
+
| 11.5726 | 56000 | 0.0034 | 0.0656 | 0.7003 |
|
497 |
+
| 11.7793 | 57000 | 0.0036 | 0.0643 | 0.7009 |
|
498 |
+
| 11.9859 | 58000 | 0.0038 | 0.0649 | 0.7166 |
|
499 |
+
| 12.1926 | 59000 | 0.0039 | 0.0659 | 0.7168 |
|
500 |
+
| 12.3993 | 60000 | 0.0039 | 0.0647 | 0.7080 |
|
501 |
+
| 12.6059 | 61000 | 0.0032 | 0.0649 | 0.7114 |
|
502 |
+
| 12.8126 | 62000 | 0.0034 | 0.0646 | 0.7165 |
|
503 |
+
| 13.0192 | 63000 | 0.0034 | 0.0654 | 0.7197 |
|
504 |
+
| 13.2259 | 64000 | 0.0035 | 0.0657 | 0.7179 |
|
505 |
+
| 13.4325 | 65000 | 0.0031 | 0.0652 | 0.7107 |
|
506 |
+
| 13.6392 | 66000 | 0.0032 | 0.0649 | 0.7089 |
|
507 |
+
| 13.8458 | 67000 | 0.0034 | 0.0655 | 0.7089 |
|
508 |
+
| 14.0525 | 68000 | 0.0031 | 0.0668 | 0.7163 |
|
509 |
+
| 14.2591 | 69000 | 0.0035 | 0.0644 | 0.7213 |
|
510 |
+
| 14.4658 | 70000 | 0.0035 | 0.0634 | 0.7057 |
|
511 |
+
| 14.6725 | 71000 | 0.0035 | 0.0635 | 0.7049 |
|
512 |
+
| 14.8791 | 72000 | 0.0033 | 0.0627 | 0.7094 |
|
513 |
+
| 15.0858 | 73000 | 0.0037 | 0.0620 | 0.7140 |
|
514 |
+
| 15.2924 | 74000 | 0.0035 | 0.0628 | 0.7237 |
|
515 |
+
| 15.4991 | 75000 | 0.003 | 0.0625 | 0.7127 |
|
516 |
+
| 15.7057 | 76000 | 0.0036 | 0.0635 | 0.7127 |
|
517 |
+
| 15.9124 | 77000 | 0.0037 | 0.0621 | 0.7104 |
|
518 |
+
| 16.1190 | 78000 | 0.0033 | 0.0624 | 0.7132 |
|
519 |
+
| 16.3257 | 79000 | 0.0035 | 0.0632 | 0.7132 |
|
520 |
+
| 16.5323 | 80000 | 0.003 | 0.0626 | 0.7193 |
|
521 |
+
| 16.7390 | 81000 | 0.0033 | 0.0628 | 0.7179 |
|
522 |
+
| 16.9456 | 82000 | 0.0036 | 0.0630 | 0.7210 |
|
523 |
+
| 17.1523 | 83000 | 0.0033 | 0.0628 | 0.7222 |
|
524 |
+
| 17.3590 | 84000 | 0.0034 | 0.0629 | 0.7226 |
|
525 |
+
| 17.5656 | 85000 | 0.0029 | 0.0621 | 0.7207 |
|
526 |
+
| 17.7723 | 86000 | 0.0032 | 0.0618 | 0.7182 |
|
527 |
+
| 17.9789 | 87000 | 0.0034 | 0.0620 | 0.7177 |
|
528 |
+
| 18.1856 | 88000 | 0.0034 | 0.0625 | 0.7148 |
|
529 |
+
| 18.3922 | 89000 | 0.0032 | 0.0624 | 0.7131 |
|
530 |
+
| 18.5989 | 90000 | 0.0032 | 0.0622 | 0.7126 |
|
531 |
+
| 18.8055 | 91000 | 0.0031 | 0.0617 | 0.7185 |
|
532 |
+
| 19.0122 | 92000 | 0.0032 | 0.0620 | 0.7231 |
|
533 |
+
| 19.2188 | 93000 | 0.0028 | 0.0623 | 0.7202 |
|
534 |
+
| 19.4255 | 94000 | 0.003 | 0.0625 | 0.7194 |
|
535 |
+
| 19.6322 | 95000 | 0.003 | 0.0619 | 0.7139 |
|
536 |
+
| 19.8388 | 96000 | 0.0031 | 0.0621 | 0.7151 |
|
537 |
+
| 20.0455 | 97000 | 0.0031 | 0.0617 | 0.7188 |
|
538 |
+
| 20.2521 | 98000 | 0.0031 | 0.0619 | 0.7161 |
|
539 |
+
| 20.4588 | 99000 | 0.0027 | 0.0612 | 0.7164 |
|
540 |
+
| 20.6654 | 100000 | 0.0033 | 0.0616 | 0.7173 |
|
541 |
+
| 20.8721 | 101000 | 0.0033 | 0.0614 | 0.7182 |
|
542 |
+
| 21.0787 | 102000 | 0.003 | 0.0611 | 0.7194 |
|
543 |
+
| 21.2854 | 103000 | 0.0031 | 0.0614 | 0.7191 |
|
544 |
+
| 21.4920 | 104000 | 0.0031 | 0.0615 | 0.7187 |
|
545 |
+
| 21.6987 | 105000 | 0.0035 | 0.0609 | 0.7143 |
|
546 |
+
| 21.9054 | 106000 | 0.0033 | 0.0614 | 0.7180 |
|
547 |
+
| 22.1120 | 107000 | 0.0029 | 0.0608 | 0.7215 |
|
548 |
+
| 22.3187 | 108000 | 0.0032 | 0.0609 | 0.7250 |
|
549 |
+
| 22.5253 | 109000 | 0.0029 | 0.0611 | 0.7248 |
|
550 |
+
| 22.7320 | 110000 | 0.003 | 0.0612 | 0.7224 |
|
551 |
+
| 22.9386 | 111000 | 0.0029 | 0.0612 | 0.7180 |
|
552 |
+
| 23.1453 | 112000 | 0.0032 | 0.0610 | 0.7169 |
|
553 |
+
| 23.3519 | 113000 | 0.0032 | 0.0609 | 0.7174 |
|
554 |
+
| 23.5586 | 114000 | 0.0028 | 0.0613 | 0.7204 |
|
555 |
+
| 23.7652 | 115000 | 0.0033 | 0.0613 | 0.7222 |
|
556 |
+
| 23.9719 | 116000 | 0.0033 | 0.0613 | 0.7240 |
|
557 |
+
| 24.1785 | 117000 | 0.003 | 0.0610 | 0.7244 |
|
558 |
+
| 24.3852 | 118000 | 0.0027 | 0.0613 | 0.7239 |
|
559 |
+
| 24.5919 | 119000 | 0.0028 | 0.0615 | 0.7248 |
|
560 |
+
| 24.7985 | 120000 | 0.003 | 0.0608 | 0.7259 |
|
561 |
+
| 25.0052 | 121000 | 0.0033 | 0.0605 | 0.7270 |
|
562 |
+
| 25.2118 | 122000 | 0.0035 | 0.0604 | 0.7240 |
|
563 |
+
| 25.4185 | 123000 | 0.003 | 0.0607 | 0.7245 |
|
564 |
+
| 25.6251 | 124000 | 0.003 | 0.0608 | 0.7238 |
|
565 |
+
| 25.8318 | 125000 | 0.0032 | 0.0605 | 0.7208 |
|
566 |
+
| 26.0384 | 126000 | 0.0029 | 0.0605 | 0.7208 |
|
567 |
+
| 26.2451 | 127000 | 0.0034 | 0.0603 | 0.7212 |
|
568 |
+
| 26.4517 | 128000 | 0.003 | 0.0605 | 0.7222 |
|
569 |
+
| 26.6584 | 129000 | 0.003 | 0.0604 | 0.7236 |
|
570 |
+
| 26.8651 | 130000 | 0.003 | 0.0608 | 0.7271 |
|
571 |
+
| 27.0717 | 131000 | 0.0028 | 0.0608 | 0.7242 |
|
572 |
+
| 27.2784 | 132000 | 0.0028 | 0.0612 | 0.7239 |
|
573 |
+
| 27.4850 | 133000 | 0.0025 | 0.0609 | 0.7270 |
|
574 |
+
| 27.6917 | 134000 | 0.0026 | 0.0607 | 0.7277 |
|
575 |
+
| 27.8983 | 135000 | 0.003 | 0.0608 | 0.7263 |
|
576 |
+
| 28.1050 | 136000 | 0.003 | 0.0609 | 0.7250 |
|
577 |
+
| 28.3116 | 137000 | 0.0029 | 0.0607 | 0.7262 |
|
578 |
+
| 28.5183 | 138000 | 0.0029 | 0.0609 | 0.7269 |
|
579 |
+
| 28.7249 | 139000 | 0.0029 | 0.0607 | 0.7250 |
|
580 |
+
| 28.9316 | 140000 | 0.0025 | 0.0608 | 0.7254 |
|
581 |
+
| 29.1383 | 141000 | 0.0031 | 0.0609 | 0.7262 |
|
582 |
+
| 29.3449 | 142000 | 0.0027 | 0.0606 | 0.7247 |
|
583 |
+
| 29.5516 | 143000 | 0.003 | 0.0607 | 0.7244 |
|
584 |
+
| 29.7582 | 144000 | 0.0028 | 0.0606 | 0.7240 |
|
585 |
+
| 29.9649 | 145000 | 0.0028 | 0.0605 | 0.7228 |
|
586 |
+
| 30.1715 | 146000 | 0.0032 | 0.0604 | 0.7251 |
|
587 |
+
| 30.3782 | 147000 | 0.0033 | 0.0603 | 0.7240 |
|
588 |
+
| 30.5848 | 148000 | 0.0029 | 0.0604 | 0.7242 |
|
589 |
+
| 30.7915 | 149000 | 0.0032 | 0.0603 | 0.7241 |
|
590 |
+
| 30.9981 | 150000 | 0.0028 | 0.0602 | 0.7246 |
|
591 |
+
| 31.2048 | 151000 | 0.0029 | 0.0602 | 0.7261 |
|
592 |
+
| 31.4114 | 152000 | 0.003 | 0.0602 | 0.7258 |
|
593 |
+
| 31.6181 | 153000 | 0.0031 | 0.0603 | 0.7253 |
|
594 |
+
| 31.8248 | 154000 | 0.003 | 0.0602 | 0.7250 |
|
595 |
+
| 32.0314 | 155000 | 0.0033 | 0.0602 | 0.7248 |
|
596 |
+
| 32.2381 | 156000 | 0.0031 | 0.0601 | 0.7248 |
|
597 |
+
| 32.4447 | 157000 | 0.0027 | 0.0602 | 0.7240 |
|
598 |
+
| 32.6514 | 158000 | 0.0026 | 0.0602 | 0.7243 |
|
599 |
+
| 32.8580 | 159000 | 0.0028 | 0.0602 | 0.7249 |
|
600 |
+
| 33.0647 | 160000 | 0.0033 | 0.0602 | 0.7251 |
|
601 |
+
| 33.2713 | 161000 | 0.0031 | 0.0602 | 0.7252 |
|
602 |
+
| 33.4780 | 162000 | 0.0027 | 0.0600 | 0.7247 |
|
603 |
+
| 33.6846 | 163000 | 0.0031 | 0.0601 | 0.7247 |
|
604 |
+
| 33.8913 | 164000 | 0.0032 | 0.0601 | 0.7251 |
|
605 |
+
| 34.0980 | 165000 | 0.0026 | 0.0602 | 0.7252 |
|
606 |
+
| 34.3046 | 166000 | 0.0034 | 0.0602 | 0.7252 |
|
607 |
+
| 34.5113 | 167000 | 0.0028 | 0.0602 | 0.7250 |
|
608 |
+
| 34.7179 | 168000 | 0.0029 | 0.0601 | 0.7249 |
|
609 |
+
| 34.9246 | 169000 | 0.0028 | 0.0602 | 0.7253 |
|
610 |
+
| 35.1312 | 170000 | 0.0026 | 0.0601 | 0.7249 |
|
611 |
+
| 35.3379 | 171000 | 0.0027 | 0.0601 | 0.7247 |
|
612 |
+
| 35.5445 | 172000 | 0.0031 | 0.0601 | 0.7245 |
|
613 |
+
| 35.7512 | 173000 | 0.003 | 0.0600 | 0.7245 |
|
614 |
+
| 35.9578 | 174000 | 0.003 | 0.0601 | 0.7250 |
|
615 |
+
| 36.1645 | 175000 | 0.0027 | 0.0600 | 0.7246 |
|
616 |
+
| 36.3712 | 176000 | 0.0028 | 0.0601 | 0.7248 |
|
617 |
+
| 36.5778 | 177000 | 0.0027 | 0.0601 | 0.7250 |
|
618 |
+
| 36.7845 | 178000 | 0.0028 | 0.0601 | 0.7252 |
|
619 |
+
| 36.9911 | 179000 | 0.0029 | 0.0601 | 0.7252 |
|
620 |
+
| 37.1978 | 180000 | 0.0029 | 0.0602 | 0.7251 |
|
621 |
+
| 37.4044 | 181000 | 0.0025 | 0.0601 | 0.7250 |
|
622 |
+
| 37.6111 | 182000 | 0.003 | 0.0601 | 0.7250 |
|
623 |
+
| 37.8177 | 183000 | 0.0028 | 0.0601 | 0.7251 |
|
624 |
+
| 38.0244 | 184000 | 0.0028 | 0.0601 | 0.7252 |
|
625 |
+
| 38.2310 | 185000 | 0.0034 | 0.0600 | 0.7251 |
|
626 |
+
| 38.4377 | 186000 | 0.0028 | 0.0601 | 0.7251 |
|
627 |
+
| 38.6443 | 187000 | 0.0035 | 0.0601 | 0.7250 |
|
628 |
+
| 38.8510 | 188000 | 0.003 | 0.0600 | 0.7250 |
|
629 |
+
| 39.0577 | 189000 | 0.0028 | 0.0601 | 0.7252 |
|
630 |
+
| 39.2643 | 190000 | 0.0027 | 0.0600 | 0.7250 |
|
631 |
+
| 39.4710 | 191000 | 0.0026 | 0.0601 | 0.7250 |
|
632 |
+
| 39.6776 | 192000 | 0.0028 | 0.0600 | 0.7251 |
|
633 |
+
| 39.8843 | 193000 | 0.0027 | 0.0600 | 0.7251 |
|
634 |
+
| 40.0909 | 194000 | 0.0031 | 0.0601 | 0.7252 |
|
635 |
+
| 40.2976 | 195000 | 0.0031 | 0.0600 | 0.7252 |
|
636 |
+
| 40.5042 | 196000 | 0.0029 | 0.0601 | 0.7251 |
|
637 |
+
| 40.7109 | 197000 | 0.0032 | 0.0600 | 0.7251 |
|
638 |
+
| 40.9175 | 198000 | 0.0028 | 0.0600 | 0.7251 |
|
639 |
+
| 41.1242 | 199000 | 0.0029 | 0.0600 | 0.7252 |
|
640 |
+
| 41.3309 | 200000 | 0.003 | 0.0600 | 0.7251 |
|
641 |
+
|
642 |
+
* The bold row denotes the saved checkpoint.
|
643 |
+
</details>
|
644 |
|
645 |
### Framework Versions
|
646 |
- Python: 3.12.3
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 298041696
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80d620f65f36a797833828aad1edbcab0bc63cbc8e7cf5d4b7af936d5ecd305b
|
3 |
size 298041696
|