Add new SentenceTransformer model
Browse files
README.md
CHANGED
@@ -83,28 +83,28 @@ model-index:
|
|
83 |
type: test
|
84 |
metrics:
|
85 |
- type: cosine_accuracy@1
|
86 |
-
value: 0.
|
87 |
name: Cosine Accuracy@1
|
88 |
- type: cosine_precision@1
|
89 |
-
value: 0.
|
90 |
name: Cosine Precision@1
|
91 |
- type: cosine_recall@1
|
92 |
-
value: 0.
|
93 |
name: Cosine Recall@1
|
94 |
- type: cosine_ndcg@10
|
95 |
-
value: 0.
|
96 |
name: Cosine Ndcg@10
|
97 |
- type: cosine_mrr@1
|
98 |
-
value: 0.
|
99 |
name: Cosine Mrr@1
|
100 |
- type: cosine_map@100
|
101 |
-
value: 0.
|
102 |
name: Cosine Map@100
|
103 |
- type: cosine_auc_precision_cache_hit_ratio
|
104 |
-
value: 0.
|
105 |
name: Cosine Auc Precision Cache Hit Ratio
|
106 |
- type: cosine_auc_similarity_distribution
|
107 |
-
value: 0.
|
108 |
name: Cosine Auc Similarity Distribution
|
109 |
---
|
110 |
|
@@ -169,9 +169,9 @@ print(embeddings.shape)
|
|
169 |
# Get the similarity scores for the embeddings
|
170 |
similarities = model.similarity(embeddings, embeddings)
|
171 |
print(similarities)
|
172 |
-
# tensor([[1.0000, 1.0000, 0.
|
173 |
-
# [1.0000, 1.0000, 0.
|
174 |
-
# [0.
|
175 |
```
|
176 |
|
177 |
<!--
|
@@ -209,13 +209,13 @@ You can finetune this model on your own dataset.
|
|
209 |
|
210 |
| Metric | Value |
|
211 |
|:-------------------------------------|:-----------|
|
212 |
-
| cosine_accuracy@1 | 0.
|
213 |
-
| cosine_precision@1 | 0.
|
214 |
-
| cosine_recall@1 | 0.
|
215 |
-
| **cosine_ndcg@10** | **0.
|
216 |
-
| cosine_mrr@1 | 0.
|
217 |
-
| cosine_map@100 | 0.
|
218 |
-
| cosine_auc_precision_cache_hit_ratio | 0.
|
219 |
| cosine_auc_similarity_distribution | 0.154 |
|
220 |
|
221 |
<!--
|
@@ -286,10 +286,157 @@ You can finetune this model on your own dataset.
|
|
286 |
}
|
287 |
```
|
288 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
### Training Logs
|
290 |
| Epoch | Step | test_cosine_ndcg@10 |
|
291 |
|:-----:|:----:|:-------------------:|
|
292 |
-
| -1 | -1 | 0.
|
293 |
|
294 |
|
295 |
### Framework Versions
|
|
|
83 |
type: test
|
84 |
metrics:
|
85 |
- type: cosine_accuracy@1
|
86 |
+
value: 0.5953768980477223
|
87 |
name: Cosine Accuracy@1
|
88 |
- type: cosine_precision@1
|
89 |
+
value: 0.5953768980477223
|
90 |
name: Cosine Precision@1
|
91 |
- type: cosine_recall@1
|
92 |
+
value: 0.5778879609728815
|
93 |
name: Cosine Recall@1
|
94 |
- type: cosine_ndcg@10
|
95 |
+
value: 0.7775436499957671
|
96 |
name: Cosine Ndcg@10
|
97 |
- type: cosine_mrr@1
|
98 |
+
value: 0.5953768980477223
|
99 |
name: Cosine Mrr@1
|
100 |
- type: cosine_map@100
|
101 |
+
value: 0.7274666565910912
|
102 |
name: Cosine Map@100
|
103 |
- type: cosine_auc_precision_cache_hit_ratio
|
104 |
+
value: 0.36387321267916206
|
105 |
name: Cosine Auc Precision Cache Hit Ratio
|
106 |
- type: cosine_auc_similarity_distribution
|
107 |
+
value: 0.15403918371209657
|
108 |
name: Cosine Auc Similarity Distribution
|
109 |
---
|
110 |
|
|
|
169 |
# Get the similarity scores for the embeddings
|
170 |
similarities = model.similarity(embeddings, embeddings)
|
171 |
print(similarities)
|
172 |
+
# tensor([[1.0000, 1.0000, 0.8251],
|
173 |
+
# [1.0000, 1.0000, 0.8251],
|
174 |
+
# [0.8251, 0.8251, 1.0000]])
|
175 |
```
|
176 |
|
177 |
<!--
|
|
|
209 |
|
210 |
| Metric | Value |
|
211 |
|:-------------------------------------|:-----------|
|
212 |
+
| cosine_accuracy@1 | 0.5954 |
|
213 |
+
| cosine_precision@1 | 0.5954 |
|
214 |
+
| cosine_recall@1 | 0.5779 |
|
215 |
+
| **cosine_ndcg@10** | **0.7775** |
|
216 |
+
| cosine_mrr@1 | 0.5954 |
|
217 |
+
| cosine_map@100 | 0.7275 |
|
218 |
+
| cosine_auc_precision_cache_hit_ratio | 0.3639 |
|
219 |
| cosine_auc_similarity_distribution | 0.154 |
|
220 |
|
221 |
<!--
|
|
|
286 |
}
|
287 |
```
|
288 |
|
289 |
+
### Training Hyperparameters
|
290 |
+
#### Non-Default Hyperparameters
|
291 |
+
|
292 |
+
- `eval_strategy`: steps
|
293 |
+
- `per_device_train_batch_size`: 300
|
294 |
+
- `per_device_eval_batch_size`: 300
|
295 |
+
- `gradient_accumulation_steps`: 2
|
296 |
+
- `weight_decay`: 0.001
|
297 |
+
- `adam_beta2`: 0.98
|
298 |
+
- `adam_epsilon`: 1e-06
|
299 |
+
- `num_train_epochs`: 1
|
300 |
+
- `warmup_ratio`: 0.05
|
301 |
+
- `bf16`: True
|
302 |
+
- `dataloader_num_workers`: 4
|
303 |
+
- `dataloader_prefetch_factor`: 4
|
304 |
+
- `load_best_model_at_end`: True
|
305 |
+
- `optim`: stable_adamw
|
306 |
+
- `ddp_find_unused_parameters`: False
|
307 |
+
- `dataloader_persistent_workers`: True
|
308 |
+
- `push_to_hub`: True
|
309 |
+
- `hub_model_id`: redis/langcache-embed-v3
|
310 |
+
- `batch_sampler`: no_duplicates
|
311 |
+
|
312 |
+
#### All Hyperparameters
|
313 |
+
<details><summary>Click to expand</summary>
|
314 |
+
|
315 |
+
- `overwrite_output_dir`: False
|
316 |
+
- `do_predict`: False
|
317 |
+
- `eval_strategy`: steps
|
318 |
+
- `prediction_loss_only`: True
|
319 |
+
- `per_device_train_batch_size`: 300
|
320 |
+
- `per_device_eval_batch_size`: 300
|
321 |
+
- `per_gpu_train_batch_size`: None
|
322 |
+
- `per_gpu_eval_batch_size`: None
|
323 |
+
- `gradient_accumulation_steps`: 2
|
324 |
+
- `eval_accumulation_steps`: None
|
325 |
+
- `torch_empty_cache_steps`: None
|
326 |
+
- `learning_rate`: 5e-05
|
327 |
+
- `weight_decay`: 0.001
|
328 |
+
- `adam_beta1`: 0.9
|
329 |
+
- `adam_beta2`: 0.98
|
330 |
+
- `adam_epsilon`: 1e-06
|
331 |
+
- `max_grad_norm`: 1.0
|
332 |
+
- `num_train_epochs`: 1
|
333 |
+
- `max_steps`: -1
|
334 |
+
- `lr_scheduler_type`: linear
|
335 |
+
- `lr_scheduler_kwargs`: {}
|
336 |
+
- `warmup_ratio`: 0.05
|
337 |
+
- `warmup_steps`: 0
|
338 |
+
- `log_level`: passive
|
339 |
+
- `log_level_replica`: warning
|
340 |
+
- `log_on_each_node`: True
|
341 |
+
- `logging_nan_inf_filter`: True
|
342 |
+
- `save_safetensors`: True
|
343 |
+
- `save_on_each_node`: False
|
344 |
+
- `save_only_model`: False
|
345 |
+
- `restore_callback_states_from_checkpoint`: False
|
346 |
+
- `no_cuda`: False
|
347 |
+
- `use_cpu`: False
|
348 |
+
- `use_mps_device`: False
|
349 |
+
- `seed`: 42
|
350 |
+
- `data_seed`: None
|
351 |
+
- `jit_mode_eval`: False
|
352 |
+
- `use_ipex`: False
|
353 |
+
- `bf16`: True
|
354 |
+
- `fp16`: False
|
355 |
+
- `fp16_opt_level`: O1
|
356 |
+
- `half_precision_backend`: auto
|
357 |
+
- `bf16_full_eval`: False
|
358 |
+
- `fp16_full_eval`: False
|
359 |
+
- `tf32`: None
|
360 |
+
- `local_rank`: 0
|
361 |
+
- `ddp_backend`: None
|
362 |
+
- `tpu_num_cores`: None
|
363 |
+
- `tpu_metrics_debug`: False
|
364 |
+
- `debug`: []
|
365 |
+
- `dataloader_drop_last`: False
|
366 |
+
- `dataloader_num_workers`: 4
|
367 |
+
- `dataloader_prefetch_factor`: 4
|
368 |
+
- `past_index`: -1
|
369 |
+
- `disable_tqdm`: False
|
370 |
+
- `remove_unused_columns`: True
|
371 |
+
- `label_names`: None
|
372 |
+
- `load_best_model_at_end`: True
|
373 |
+
- `ignore_data_skip`: False
|
374 |
+
- `fsdp`: []
|
375 |
+
- `fsdp_min_num_params`: 0
|
376 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
377 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
378 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
379 |
+
- `parallelism_config`: None
|
380 |
+
- `deepspeed`: None
|
381 |
+
- `label_smoothing_factor`: 0.0
|
382 |
+
- `optim`: stable_adamw
|
383 |
+
- `optim_args`: None
|
384 |
+
- `adafactor`: False
|
385 |
+
- `group_by_length`: False
|
386 |
+
- `length_column_name`: length
|
387 |
+
- `ddp_find_unused_parameters`: False
|
388 |
+
- `ddp_bucket_cap_mb`: None
|
389 |
+
- `ddp_broadcast_buffers`: False
|
390 |
+
- `dataloader_pin_memory`: True
|
391 |
+
- `dataloader_persistent_workers`: True
|
392 |
+
- `skip_memory_metrics`: True
|
393 |
+
- `use_legacy_prediction_loop`: False
|
394 |
+
- `push_to_hub`: True
|
395 |
+
- `resume_from_checkpoint`: None
|
396 |
+
- `hub_model_id`: redis/langcache-embed-v3
|
397 |
+
- `hub_strategy`: every_save
|
398 |
+
- `hub_private_repo`: None
|
399 |
+
- `hub_always_push`: False
|
400 |
+
- `hub_revision`: None
|
401 |
+
- `gradient_checkpointing`: False
|
402 |
+
- `gradient_checkpointing_kwargs`: None
|
403 |
+
- `include_inputs_for_metrics`: False
|
404 |
+
- `include_for_metrics`: []
|
405 |
+
- `eval_do_concat_batches`: True
|
406 |
+
- `fp16_backend`: auto
|
407 |
+
- `push_to_hub_model_id`: None
|
408 |
+
- `push_to_hub_organization`: None
|
409 |
+
- `mp_parameters`:
|
410 |
+
- `auto_find_batch_size`: False
|
411 |
+
- `full_determinism`: False
|
412 |
+
- `torchdynamo`: None
|
413 |
+
- `ray_scope`: last
|
414 |
+
- `ddp_timeout`: 1800
|
415 |
+
- `torch_compile`: False
|
416 |
+
- `torch_compile_backend`: None
|
417 |
+
- `torch_compile_mode`: None
|
418 |
+
- `include_tokens_per_second`: False
|
419 |
+
- `include_num_input_tokens_seen`: False
|
420 |
+
- `neftune_noise_alpha`: None
|
421 |
+
- `optim_target_modules`: None
|
422 |
+
- `batch_eval_metrics`: False
|
423 |
+
- `eval_on_start`: False
|
424 |
+
- `use_liger_kernel`: False
|
425 |
+
- `liger_kernel_config`: None
|
426 |
+
- `eval_use_gather_object`: False
|
427 |
+
- `average_tokens_across_devices`: False
|
428 |
+
- `prompts`: None
|
429 |
+
- `batch_sampler`: no_duplicates
|
430 |
+
- `multi_dataset_batch_sampler`: proportional
|
431 |
+
- `router_mapping`: {}
|
432 |
+
- `learning_rate_mapping`: {}
|
433 |
+
|
434 |
+
</details>
|
435 |
+
|
436 |
### Training Logs
|
437 |
| Epoch | Step | test_cosine_ndcg@10 |
|
438 |
|:-----:|:----:|:-------------------:|
|
439 |
+
| -1 | -1 | 0.7775 |
|
440 |
|
441 |
|
442 |
### Framework Versions
|