|
from typing import Dict, List, Any |
|
import torch |
|
from diffusers import DPMSolverMultistepScheduler, StableDiffusionInpaintPipeline |
|
from PIL import Image |
|
import base64 |
|
from io import BytesIO |
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
if device.type != 'cuda': |
|
raise ValueError("need to run on GPU") |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16) |
|
|
|
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config) |
|
|
|
self.pipe = self.pipe.to(device) |
|
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
:param data: A dictionary contains `inputs` and optional `image` field. |
|
:return: A dictionary with `image` field contains image in base64. |
|
""" |
|
inputs = data.pop("inputs", data) |
|
encoded_image = data.pop("image", None) |
|
encoded_mask_image = data.pop("mask_image", None) |
|
|
|
|
|
num_inference_steps = data.pop("num_inference_steps", 25) |
|
guidance_scale = data.pop("guidance_scale", 7.5) |
|
negative_prompt = data.pop("negative_prompt", None) |
|
height = data.pop("height", None) |
|
width = data.pop("width", None) |
|
|
|
|
|
if encoded_image is not None and encoded_mask_image is not None: |
|
image = self.decode_base64_image(encoded_image) |
|
mask_image = self.decode_base64_image(encoded_mask_image) |
|
else: |
|
image = None |
|
mask_image = None |
|
|
|
|
|
out = self.pipe(inputs, |
|
image=image, |
|
mask_image=mask_image, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=1, |
|
negative_prompt=negative_prompt, |
|
height=height, |
|
width=width |
|
) |
|
|
|
|
|
return out.images[0] |
|
|
|
|
|
def decode_base64_image(self, image_string): |
|
base64_image = base64.b64decode(image_string) |
|
buffer = BytesIO(base64_image) |
|
image = Image.open(buffer) |
|
return image |
|
|