Update README.md
Browse files
README.md
CHANGED
@@ -1,29 +1,32 @@
|
|
1 |
---
|
2 |
base_model: google/gemma-2-2b-it
|
3 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
### Model Sources [optional]
|
29 |
|
@@ -39,9 +42,7 @@ library_name: peft
|
|
39 |
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
|
46 |
### Downstream Use [optional]
|
47 |
|
@@ -71,7 +72,21 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
71 |
|
72 |
Use the code below to get started with the model.
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
|
|
1 |
---
|
2 |
base_model: google/gemma-2-2b-it
|
3 |
library_name: peft
|
4 |
+
license: apache-2.0
|
5 |
+
language:
|
6 |
+
- es
|
7 |
+
tags:
|
8 |
+
- news
|
9 |
+
- chat
|
10 |
+
- LoRa
|
11 |
+
- conversational AI
|
12 |
---
|
13 |
|
14 |
# Model Card for Model ID
|
15 |
|
16 |
<!-- Provide a quick summary of what the model is/does. -->
|
17 |
|
18 |
+
Lightweight finetuning of google/gemma-2-2b-it on a public dataset of news from Spanish digital newspapers (https://www.kaggle.com/datasets/josemamuiz/noticias-laraznpblico/).
|
19 |
|
20 |
## Model Details
|
21 |
|
22 |
### Model Description
|
23 |
|
24 |
+
This model is fine-tuned using LoRa (Low-Rank Adaptation) on the "Noticias La Raz贸n y P煤blico" dataset, a collection of Spanish news articles. The finetuning was done with lightweight methods to ensure efficient training while maintaining performance on the news-related language generation tasks.
|
|
|
|
|
25 |
|
26 |
+
- **Developed by:** https://talkingtochatbots.com
|
27 |
+
- **Language(s) (NLP):** Spanish (es)
|
28 |
+
- **License:** apache-2.0
|
29 |
+
- **Finetuned from model:** google/gemma-2-2b-it
|
|
|
|
|
|
|
30 |
|
31 |
### Model Sources [optional]
|
32 |
|
|
|
42 |
|
43 |
### Direct Use
|
44 |
|
45 |
+
This model can be used for **conversational AI tasks** related to Spanish-language news. The fine-tuned LoRa model is especially suitable for use cases that require both understanding and generating text, such as chat-based interactions, answering questions about news, and discussing headlines.
|
|
|
|
|
46 |
|
47 |
### Downstream Use [optional]
|
48 |
|
|
|
72 |
|
73 |
Use the code below to get started with the model.
|
74 |
|
75 |
+
```python
|
76 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
77 |
+
from peft import PeftModel
|
78 |
+
|
79 |
+
# Load the tokenizer and model
|
80 |
+
save_directory = "./fine_tuned_model"
|
81 |
+
tokenizer = AutoTokenizer.from_pretrained(save_directory)
|
82 |
+
model = AutoModelForCausalLM.from_pretrained(save_directory)
|
83 |
+
peft_model = PeftModel.from_pretrained(model, save_directory)
|
84 |
+
|
85 |
+
# Example usage
|
86 |
+
input_text = "驴Qu茅 opinas de las noticias recientes sobre la econom铆a?"
|
87 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
88 |
+
output = peft_model.generate(**inputs, max_length=50)
|
89 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
90 |
|
91 |
## Training Details
|
92 |
|