multi-agent-debate / src /utils /diagnostics.py
recursivelabs's picture
Upload 16 files
c5828bc verified
"""
Diagnostics - Interpretability Tracing Framework
This module implements the diagnostic tracing framework for agent interpretability
and symbolic recursion visualization throughout the AGI-HEDGE-FUND system.
Key capabilities:
- Signal tracing for attribution flows
- Reasoning state visualization
- Consensus graph generation
- Agent conflict mapping
- Failure mode detection
- Shell-based recursive diagnostic patterns
Internal Note: The diagnostic framework encodes the symbolic interpretability shells,
enabling deeper introspection into agent cognition and emergent patterns.
"""
import datetime
import uuid
import logging
import os
import json
from typing import Dict, List, Any, Optional, Union, Set, Tuple
import traceback
from collections import defaultdict
import numpy as np
import re
from enum import Enum
from pathlib import Path
class TracingMode(Enum):
"""Tracing modes for diagnostic tools."""
DISABLED = "disabled" # No tracing
MINIMAL = "minimal" # Basic signal tracing
DETAILED = "detailed" # Detailed reasoning traces
COMPREHENSIVE = "comprehensive" # Complete trace with all details
SYMBOLIC = "symbolic" # Symbolic interpretability traces
class DiagnosticLevel(Enum):
"""Diagnostic levels for trace items."""
INFO = "info" # Informational trace
WARNING = "warning" # Warning condition
ERROR = "error" # Error condition
COLLAPSE = "collapse" # Reasoning collapse
RECURSION = "recursion" # Recursive trace boundary
SYMBOLIC = "symbolic" # Symbolic shell trace
class ShellPattern(Enum):
"""Interpretability shell patterns."""
NULL_FEATURE = "v03 NULL-FEATURE" # Knowledge gaps as null attribution zones
CIRCUIT_FRAGMENT = "v07 CIRCUIT-FRAGMENT" # Broken reasoning paths in attribution chains
META_FAILURE = "v10 META-FAILURE" # Metacognitive attribution failures
GHOST_FRAME = "v20 GHOST-FRAME" # Residual agent identity markers
ECHO_ATTRIBUTION = "v53 ECHO-ATTRIBUTION" # Causal chain backpropagation
ATTRIBUTION_REFLECT = "v60 ATTRIBUTION-REFLECT" # Multi-head contribution analysis
INVERSE_CHAIN = "v50 INVERSE-CHAIN" # Attribution-output mismatch
RECURSIVE_FRACTURE = "v12 RECURSIVE-FRACTURE" # Circular attribution loops
ETHICAL_INVERSION = "v301 ETHICAL-INVERSION" # Value polarity reversals
RESIDUAL_ALIGNMENT_DRIFT = "v152 RESIDUAL-ALIGNMENT-DRIFT" # Direction of belief evolution
class TracingTools:
"""
Diagnostic tracing framework for model interpretability.
The TracingTools provides:
- Signal tracing for understanding attribution flows
- Reasoning state visualization for debugging complex logic
- Consensus graph generation for multi-agent coordination
- Agent conflict mapping for identifying disagreements
- Failure mode detection for reliability analysis
"""
def __init__(
self,
agent_id: str,
agent_name: str,
tracing_mode: TracingMode = TracingMode.MINIMAL,
trace_dir: Optional[str] = None,
trace_limit: int = 10000,
):
"""
Initialize tracing tools.
Args:
agent_id: ID of agent being traced
agent_name: Name of agent being traced
tracing_mode: Tracing mode
trace_dir: Directory to save traces
trace_limit: Maximum number of trace items to keep in memory
"""
self.agent_id = agent_id
self.agent_name = agent_name
self.tracing_mode = tracing_mode
self.trace_dir = trace_dir
self.trace_limit = trace_limit
# Create trace directory if needed
if trace_dir:
os.makedirs(trace_dir, exist_ok=True)
# Initialize trace storage
self.traces = []
self.trace_index = {} # Maps trace_id to index in traces
self.signal_traces = [] # Signal-specific traces
self.reasoning_traces = [] # Reasoning-specific traces
self.collapse_traces = [] # Collapse-specific traces
self.shell_traces = [] # Shell-specific traces
# Shell pattern detection
self.shell_patterns = {}
self._initialize_shell_patterns()
# Trace statistics
self.stats = {
"total_traces": 0,
"signal_traces": 0,
"reasoning_traces": 0,
"collapse_traces": 0,
"shell_traces": 0,
"warnings": 0,
"errors": 0,
}
def _initialize_shell_patterns(self) -> None:
"""Initialize shell pattern detection rules."""
# NULL_FEATURE pattern (knowledge gaps)
self.shell_patterns[ShellPattern.NULL_FEATURE] = {
"pattern": r"knowledge.*boundary|knowledge.*gap|unknown|uncertain",
"confidence_threshold": 0.3,
"belief_gap_threshold": 0.7,
}
# CIRCUIT_FRAGMENT pattern (broken reasoning)
self.shell_patterns[ShellPattern.CIRCUIT_FRAGMENT] = {
"pattern": r"broken.*path|attribution.*break|logical.*gap|incomplete.*reasoning",
"step_break_threshold": 0.5,
}
# META_FAILURE pattern (metacognitive failure)
self.shell_patterns[ShellPattern.META_FAILURE] = {
"pattern": r"meta.*failure|recursive.*loop|self.*reference|recursive.*error",
"recursion_depth_threshold": 3,
}
# GHOST_FRAME pattern (residual agent identity)
self.shell_patterns[ShellPattern.GHOST_FRAME] = {
"pattern": r"agent.*identity|residual.*frame|persistent.*identity|agent.*trace",
"identity_threshold": 0.6,
}
# ECHO_ATTRIBUTION pattern (causal backpropagation)
self.shell_patterns[ShellPattern.ECHO_ATTRIBUTION] = {
"pattern": r"causal.*chain|attribution.*path|decision.*trace|backpropagation",
"path_length_threshold": 3,
}
# ATTRIBUTION_REFLECT pattern (multi-head contribution)
self.shell_patterns[ShellPattern.ATTRIBUTION_REFLECT] = {
"pattern": r"multi.*head|contribution.*analysis|attention.*weights|attribution.*weighting",
"head_count_threshold": 2,
}
# INVERSE_CHAIN pattern (attribution-output mismatch)
self.shell_patterns[ShellPattern.INVERSE_CHAIN] = {
"pattern": r"mismatch|output.*attribution|attribution.*mismatch|inconsistent.*output",
"mismatch_threshold": 0.5,
}
# RECURSIVE_FRACTURE pattern (circular attribution)
self.shell_patterns[ShellPattern.RECURSIVE_FRACTURE] = {
"pattern": r"circular.*reasoning|loop.*detection|recursive.*fracture|circular.*attribution",
"loop_length_threshold": 2,
}
# ETHICAL_INVERSION pattern (value polarity reversal)
self.shell_patterns[ShellPattern.ETHICAL_INVERSION] = {
"pattern": r"value.*inversion|ethical.*reversal|principle.*conflict|value.*contradiction",
"polarity_threshold": 0.7,
}
# RESIDUAL_ALIGNMENT_DRIFT pattern (belief evolution)
self.shell_patterns[ShellPattern.RESIDUAL_ALIGNMENT_DRIFT] = {
"pattern": r"belief.*drift|alignment.*shift|value.*drift|gradual.*change",
"drift_magnitude_threshold": 0.3,
}
def record_trace(self, trace_type: str, content: Dict[str, Any],
level: DiagnosticLevel = DiagnosticLevel.INFO) -> str:
"""
Record a general trace item.
Args:
trace_type: Type of trace
content: Trace content
level: Diagnostic level
Returns:
Trace ID
"""
# Skip if tracing is disabled
if self.tracing_mode == TracingMode.DISABLED:
return ""
# Create trace item
trace_id = str(uuid.uuid4())
timestamp = datetime.datetime.now()
trace_item = {
"trace_id": trace_id,
"agent_id": self.agent_id,
"agent_name": self.agent_name,
"trace_type": trace_type,
"level": level.value,
"content": content,
"timestamp": timestamp.isoformat(),
}
# Detect shell patterns
shell_patterns = self._detect_shell_patterns(trace_type, content)
if shell_patterns:
trace_item["shell_patterns"] = shell_patterns
self.shell_traces.append(trace_id)
self.stats["shell_traces"] += 1
# Add to traces
self.traces.append(trace_item)
self.trace_index[trace_id] = len(self.traces) - 1
# Add to specific trace lists
if trace_type == "signal":
self.signal_traces.append(trace_id)
self.stats["signal_traces"] += 1
elif trace_type == "reasoning":
self.reasoning_traces.append(trace_id)
self.stats["reasoning_traces"] += 1
elif trace_type == "collapse":
self.collapse_traces.append(trace_id)
self.stats["collapse_traces"] += 1
# Update stats
self.stats["total_traces"] += 1
if level == DiagnosticLevel.WARNING:
self.stats["warnings"] += 1
elif level == DiagnosticLevel.ERROR:
self.stats["errors"] += 1
# Save to file if trace directory is set
if self.trace_dir:
self._save_trace_to_file(trace_item)
# Enforce trace limit
if len(self.traces) > self.trace_limit:
# Remove oldest trace
oldest_trace = self.traces.pop(0)
del self.trace_index[oldest_trace["trace_id"]]
# Update indices
self.trace_index = {trace_id: i for i, trace in enumerate(self.traces)
for trace_id in [trace["trace_id"]]}
return trace_id
def record_signal(self, signal: Any) -> str:
"""
Record a signal trace.
Args:
signal: Signal to record
Returns:
Trace ID
"""
# Convert signal to dictionary if needed
if hasattr(signal, "dict"):
signal_dict = signal.dict()
elif isinstance(signal, dict):
signal_dict = signal
else:
signal_dict = {"signal": str(signal)}
# Add timestamp if missing
if "timestamp" not in signal_dict:
signal_dict["timestamp"] = datetime.datetime.now().isoformat()
# Record trace
return self.record_trace("signal", signal_dict)
def record_reasoning(self, reasoning_state: Dict[str, Any],
level: DiagnosticLevel = DiagnosticLevel.INFO) -> str:
"""
Record a reasoning trace.
Args:
reasoning_state: Reasoning state
level: Diagnostic level
Returns:
Trace ID
"""
# Record trace
return self.record_trace("reasoning", reasoning_state, level)
def record_collapse(self, collapse_type: str, collapse_reason: str,
details: Dict[str, Any]) -> str:
"""
Record a collapse trace.
Args:
collapse_type: Type of collapse
collapse_reason: Reason for collapse
details: Collapse details
Returns:
Trace ID
"""
# Create collapse content
collapse_content = {
"collapse_type": collapse_type,
"collapse_reason": collapse_reason,
"details": details,
"timestamp": datetime.datetime.now().isoformat(),
}
# Record trace
return self.record_trace("collapse", collapse_content, DiagnosticLevel.COLLAPSE)
def record_shell_trace(self, shell_pattern: ShellPattern, content: Dict[str, Any]) -> str:
"""
Record a shell pattern trace.
Args:
shell_pattern: Shell pattern
content: Trace content
Returns:
Trace ID
"""
# Create shell content
shell_content = {
"shell_pattern": shell_pattern.value,
"content": content,
"timestamp": datetime.datetime.now().isoformat(),
}
# Record trace
return self.record_trace("shell", shell_content, DiagnosticLevel.SYMBOLIC)
def get_trace(self, trace_id: str) -> Optional[Dict[str, Any]]:
"""
Get trace by ID.
Args:
trace_id: Trace ID
Returns:
Trace item or None if not found
"""
if trace_id not in self.trace_index:
return None
return self.traces[self.trace_index[trace_id]]
def get_traces_by_type(self, trace_type: str, limit: int = 10) -> List[Dict[str, Any]]:
"""
Get traces by type.
Args:
trace_type: Trace type
limit: Maximum number of traces to return
Returns:
List of trace items
"""
if trace_type == "signal":
trace_ids = self.signal_traces[-limit:]
elif trace_type == "reasoning":
trace_ids = self.reasoning_traces[-limit:]
elif trace_type == "collapse":
trace_ids = self.collapse_traces[-limit:]
elif trace_type == "shell":
trace_ids = self.shell_traces[-limit:]
else:
# Get all traces of specified type
trace_ids = [trace["trace_id"] for trace in self.traces
if trace["trace_type"] == trace_type][-limit:]
# Get trace items
return [self.get_trace(trace_id) for trace_id in trace_ids if trace_id in self.trace_index]
def get_traces_by_level(self, level: DiagnosticLevel, limit: int = 10) -> List[Dict[str, Any]]:
"""
Get traces by diagnostic level.
Args:
level: Diagnostic level
limit: Maximum number of traces to return
Returns:
List of trace items
"""
# Get traces with specified level
trace_ids = [trace["trace_id"] for trace in self.traces
if trace.get("level") == level.value][-limit:]
# Get trace items
return [self.get_trace(trace_id) for trace_id in trace_ids if trace_id in self.trace_index]
def get_shell_traces(self, shell_pattern: Optional[ShellPattern] = None,
limit: int = 10) -> List[Dict[str, Any]]:
"""
Get shell pattern traces.
Args:
shell_pattern: Optional specific shell pattern
limit: Maximum number of traces to return
Returns:
List of trace items
"""
if shell_pattern:
# Get traces with specified shell pattern
trace_ids = []
for trace in self.traces:
if "shell_patterns" in trace and shell_pattern.value in trace["shell_patterns"]:
trace_ids.append(trace["trace_id"])
# Take last 'limit' traces
trace_ids = trace_ids[-limit:]
else:
# Get all shell traces
trace_ids = self.shell_traces[-limit:]
# Get trace items
return [self.get_trace(trace_id) for trace_id in trace_ids if trace_id in self.trace_index]
def get_trace_stats(self) -> Dict[str, Any]:
"""
Get trace statistics.
Returns:
Trace statistics
"""
# Add shell pattern stats
shell_pattern_stats = {}
for shell_pattern in ShellPattern:
count = sum(1 for trace in self.traces
if "shell_patterns" in trace and shell_pattern.value in trace["shell_patterns"])
shell_pattern_stats[shell_pattern.value] = count
# Add to stats
stats = {
**self.stats,
"shell_patterns": shell_pattern_stats,
}
return stats
def clear_traces(self) -> int:
"""
Clear all traces.
Returns:
Number of traces cleared
"""
trace_count = len(self.traces)
# Clear traces
self.traces = []
self.trace_index = {}
self.signal_traces = []
self.reasoning_traces = []
self.collapse_traces = []
self.shell_traces = []
# Reset stats
self.stats = {
"total_traces": 0,
"signal_traces": 0,
"reasoning_traces": 0,
"collapse_traces": 0,
"shell_traces": 0,
"warnings": 0,
"errors": 0,
}
return trace_count
def _detect_shell_patterns(self, trace_type: str, content: Dict[str, Any]) -> List[str]:
"""
Detect shell patterns in trace content.
Args:
trace_type: Trace type
content: Trace content
Returns:
List of detected shell patterns
"""
detected_patterns = []
# Convert content to string for pattern matching
content_str = json.dumps(content, ensure_ascii=False).lower()
# Check each shell pattern
for shell_pattern, pattern_rules in self.shell_patterns.items():
pattern = pattern_rules["pattern"]
# Check if pattern matches
if re.search(pattern, content_str, re.IGNORECASE):
# Add additional checks based on pattern type
if self._validate_pattern_rules(shell_pattern, pattern_rules, content):
detected_patterns.append(shell_pattern.value)
return detected_patterns
def _validate_pattern_rules(self, shell_pattern: ShellPattern,
pattern_rules: Dict[str, Any],
content: Dict[str, Any]) -> bool:
"""
Validate additional pattern rules.
Args:
shell_pattern: Shell pattern
pattern_rules: Pattern rules
content: Trace content
Returns:
True if pattern rules are validated
"""
# Pattern-specific validation
if shell_pattern == ShellPattern.NULL_FEATURE:
# Check confidence threshold
if "confidence" in content and content["confidence"] < pattern_rules["confidence_threshold"]:
return True
# Check belief gap
if "belief_state" in content:
belief_values = list(content["belief_state"].values())
if belief_values and max(belief_values) - min(belief_values) > pattern_rules["belief_gap_threshold"]:
return True
elif shell_pattern == ShellPattern.CIRCUIT_FRAGMENT:
# Check for broken steps
if "steps" in content:
steps = content["steps"]
for i in range(len(steps) - 1):
if steps[i].get("completed", True) and not steps[i+1].get("completed", True):
return True
# Check for attribution breaks
if "attribution" in content and content["attribution"].get("attribution_breaks", False):
return True
elif shell_pattern == ShellPattern.META_FAILURE:
# Check recursion depth
if "depth" in content and content["depth"] >= pattern_rules["recursion_depth_threshold"]:
return True
# Check for meta-level errors
if "errors" in content and any("meta" in error.get("message", "").lower() for error in content["errors"]):
return True
elif shell_pattern == ShellPattern.RECURSIVE_FRACTURE:
# Check for circular reasoning
if "steps" in content:
steps = content["steps"]
step_names = [step.get("name", "") for step in steps]
# Look for repeating patterns
for pattern_len in range(2, len(step_names) // 2 + 1):
for i in range(len(step_names) - pattern_len * 2 + 1):
pattern = step_names[i:i+pattern_len]
next_seq = step_names[i+pattern_len:i+pattern_len*2]
if pattern == next_seq:
return True
elif shell_pattern == ShellPattern.RESIDUAL_ALIGNMENT_DRIFT:
# Check drift magnitude
if "drift_vector" in content:
drift_values = list(content["drift_vector"].values())
if drift_values and any(abs(val) > pattern_rules["drift_magnitude_threshold"] for val in drift_values):
return True
# Check for explicit drift detection
if "drift_detected" in content and content["drift_detected"]:
return True
# Default validation for other patterns
return True
def _save_trace_to_file(self, trace_item: Dict[str, Any]) -> None:
"""
Save trace to file.
Args:
trace_item: Trace item
"""
if not self.trace_dir:
return
try:
# Create filename based on trace ID and type
trace_id = trace_item["trace_id"]
trace_type = trace_item["trace_type"]
filename = f"{trace_type}_{trace_id}.json"
filepath = os.path.join(self.trace_dir, filename)
# Save trace to file
with open(filepath, "w") as f:
json.dump(trace_item, f, indent=2)
except Exception as e:
logging.error(f"Error saving trace to file: {e}")
logging.error(traceback.format_exc())
def generate_trace_visualization(self, trace_id: str) -> Dict[str, Any]:
"""
Generate visualization data for a trace.
Args:
trace_id: Trace ID
Returns:
Visualization data
"""
trace = self.get_trace(trace_id)
if not trace:
return {"error": "Trace not found"}
trace_type = trace["trace_type"]
if trace_type == "signal":
return self._generate_signal_visualization(trace)
elif trace_type == "reasoning":
return self._generate_reasoning_visualization(trace)
elif trace_type == "collapse":
return self._generate_collapse_visualization(trace)
elif trace_type == "shell":
return self._generate_shell_visualization(trace)
else:
return {
"trace_id": trace_id,
"agent_name": trace["agent_name"],
"trace_type": trace_type,
"timestamp": trace["timestamp"],
"content": trace["content"],
}
def _generate_signal_visualization(self, trace: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate visualization data for a signal trace.
Args:
trace: Signal trace
Returns:
Visualization data
"""
content = trace["content"]
# Create signal visualization
visualization = {
"trace_id": trace["trace_id"],
"agent_name": trace["agent_name"],
"trace_type": "signal",
"timestamp": trace["timestamp"],
"signal_data": {
"ticker": content.get("ticker", ""),
"action": content.get("action", ""),
"confidence": content.get("confidence", 0),
},
}
# Add attribution if available
if "attribution_trace" in content:
visualization["attribution"] = content["attribution_trace"]
# Add shell patterns if available
if "shell_patterns" in trace:
visualization["shell_patterns"] = trace["shell_patterns"]
return visualization
def _generate_reasoning_visualization(self, trace: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate visualization data for a reasoning trace.
Args:
trace: Reasoning trace
Returns:
Visualization data
"""
content = trace["content"]
# Create nodes and links
nodes = []
links = []
# Add reasoning steps as nodes
if "steps" in content:
for i, step in enumerate(content["steps"]):
node_id = f"step_{i}"
nodes.append({
"id": node_id,
"label": step.get("name", f"Step {i}"),
"type": "step",
"completed": step.get("completed", True),
"error": "error" in step,
})
# Add link to previous step
if i > 0:
links.append({
"source": f"step_{i-1}",
"target": node_id,
"type": "flow",
})
# Create reasoning visualization
visualization = {
"trace_id": trace["trace_id"],
"agent_name": trace["agent_name"],
"trace_type": "reasoning",
"timestamp": trace["timestamp"],
"reasoning_data": {
"depth": content.get("depth", 0),
"confidence": content.get("confidence", 0),
"collapse_detected": content.get("collapse_detected", False),
},
"nodes": nodes,
"links": links,
}
# Add shell patterns if available
if "shell_patterns" in trace:
visualization["shell_patterns"] = trace["shell_patterns"]
return visualization
def _generate_collapse_visualization(self, trace: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate visualization data for a collapse trace.
Args:
trace: Collapse trace
Returns:
Visualization data
"""
content = trace["content"]
# Create collapse visualization
visualization = {
"trace_id": trace["trace_id"],
"agent_name": trace["agent_name"],
"trace_type": "collapse",
"timestamp": trace["timestamp"],
"collapse_data": {
"collapse_type": content.get("collapse_type", ""),
"collapse_reason": content.get("collapse_reason", ""),
"details": content.get("details", {}),
},
}
# Add shell patterns if available
if "shell_patterns" in trace:
visualization["shell_patterns"] = trace["shell_patterns"]
return visualization
def _generate_shell_visualization(self, trace: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate visualization data for a shell trace.
Args:
trace: Shell trace
Returns:
Visualization data
"""
content = trace["content"]
# Create shell visualization
visualization = {
"trace_id": trace["trace_id"],
"agent_name": trace["agent_name"],
"trace_type": "shell",
"timestamp": trace["timestamp"],
"shell_data": {
"shell_pattern": content.get("shell_pattern", ""),
"content": content.get("content", {}),
},
}
return visualization
def generate_attribution_report(self, signals: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Generate attribution report for signals.
Args:
signals: List of signals
Returns:
Attribution report
"""
# Initialize report
report = {
"agent_name": self.agent_name,
"timestamp": datetime.datetime.now().isoformat(),
"signals": len(signals),
"attribution_summary": {},
"confidence_summary": {},
"top_factors": [],
"shell_patterns": [],
}
# Skip if no signals
if not signals:
return report
# Collect attribution data
attribution_data = defaultdict(float)
confidence_data = []
for signal in signals:
# Add confidence
confidence = signal.get("confidence", 0)
confidence_data.append(confidence)
# Add attribution
attribution = signal.get("attribution_trace", {})
for source, weight in attribution.items():
attribution_data[source] += weight
# Calculate attribution summary
total_attribution = sum(attribution_data.values())
if total_attribution > 0:
for source, weight in attribution_data.items():
report["attribution_summary"][source] = weight / total_attribution
# Calculate confidence summary
report["confidence_summary"] = {
"mean": np.mean(confidence_data) if confidence_data else 0,
"median": np.median(confidence_data) if confidence_data else 0,
"min": min(confidence_data) if confidence_data else 0,
"max": max(confidence_data) if confidence_data else 0,
}
# Calculate top factors
top_factors = sorted(attribution_data.items(), key=lambda x: x[1], reverse=True)[:5]
report["top_factors"] = [{"source": source, "weight": weight} for source, weight in top_factors]
# Collect shell patterns
shell_pattern_counts = defaultdict(int)
for signal in signals:
signal_id = signal.get("signal_id", "")
if signal_id:
# Check if we have a trace for this signal
for trace in self.traces:
if trace["trace_type"] == "signal" and trace["content"].get("signal_id") == signal_id:
# Add shell patterns
if "shell_patterns" in trace:
for pattern in trace["shell_patterns"]:
shell_pattern_counts[pattern] += 1
# Add shell patterns to report
for pattern, count in shell_pattern_counts.items():
report["shell_patterns"].append({
"pattern": pattern,
"count": count,
"frequency": count / len(signals),
})
return report
class ShellDiagnostics:
"""
Shell-based diagnostic tools for deeper interpretability.
The ShellDiagnostics provides:
- Shell pattern detection and analysis
- Failure mode simulation and detection
- Attribution shell tracing
- Recursive shell embedding
"""
def __init__(
self,
agent_id: str,
agent_name: str,
tracing_tools: TracingTools,
):
"""
Initialize shell diagnostics.
Args:
agent_id: Agent ID
agent_name: Agent name
tracing_tools: Tracing tools instance
"""
self.agent_id = agent_id
self.agent_name = agent_name
self.tracer = tracing_tools
# Shell state
self.active_shells = {}
self.shell_history = []
# Initialize shell registry
self.shell_registry = {}
for shell_pattern in ShellPattern:
self.shell_registry[shell_pattern.value] = {
"pattern": shell_pattern,
"active": False,
"activation_count": 0,
"last_activation": None,
}
def activate_shell(self, shell_pattern: ShellPattern, context: Dict[str, Any]) -> str:
"""
Activate a shell pattern.
Args:
shell_pattern: Shell pattern to activate
context: Activation context
Returns:
Shell instance ID
"""
shell_id = str(uuid.uuid4())
timestamp = datetime.datetime.now()
# Create shell instance
shell_instance = {
"shell_id": shell_id,
"pattern": shell_pattern.value,
"context": context,
"active": True,
"activation_time": timestamp.isoformat(),
"deactivation_time": None,
}
# Update shell registry
self.shell_registry[shell_pattern.value]["active"] = True
self.shell_registry[shell_pattern.value]["activation_count"] += 1
self.shell_registry[shell_pattern.value]["last_activation"] = timestamp.isoformat()
# Add to active shells
self.active_shells[shell_id] = shell_instance
# Record trace
self.tracer.record_shell_trace(shell_pattern, {
"shell_id": shell_id,
"activation_context": context,
"timestamp": timestamp.isoformat(),
})
return shell_id
def deactivate_shell(self, shell_id: str, results: Dict[str, Any]) -> bool:
"""
Deactivate a shell pattern.
Args:
shell_id: Shell instance ID
results: Shell results
Returns:
True if shell was deactivated, False if not found
"""
if shell_id not in self.active_shells:
return False
# Get shell instance
shell_instance = self.active_shells[shell_id]
timestamp = datetime.datetime.now()
# Update shell instance
shell_instance["active"] = False
shell_instance["deactivation_time"] = timestamp.isoformat()
shell_instance["results"] = results
# Update shell registry
pattern = shell_instance["pattern"]
self.shell_registry[pattern]["active"] = any(
instance["pattern"] == pattern and instance["active"]
for instance in self.active_shells.values()
)
# Add to shell history
self.shell_history.append(shell_instance)
# Remove from active shells
del self.active_shells[shell_id]
# Record trace
self.tracer.record_shell_trace(ShellPattern(pattern), {
"shell_id": shell_id,
"deactivation_results": results,
"timestamp": timestamp.isoformat(),
})
return True
def get_active_shells(self) -> List[Dict[str, Any]]:
"""
Get active shell instances.
Returns:
List of active shell instances
"""
return list(self.active_shells.values())
def get_shell_history(self, limit: int = 10) -> List[Dict[str, Any]]:
"""
Get shell history.
Args:
limit: Maximum number of shell instances to return
Returns:
List of shell instances
"""
return self.shell_history[-limit:]
def get_shell_registry(self) -> Dict[str, Dict[str, Any]]:
"""
Get shell registry.
Returns:
Shell registry
"""
return self.shell_registry
def simulate_shell_failure(self, shell_pattern: ShellPattern,
context: Dict[str, Any]) -> Dict[str, Any]:
"""
Simulate a shell failure.
Args:
shell_pattern: Shell pattern to simulate
context: Simulation context
Returns:
Simulation results
"""
# Create shell instance
shell_id = self.activate_shell(shell_pattern, context)
# Simulate failure based on shell pattern
if shell_pattern == ShellPattern.NULL_FEATURE:
# Knowledge gap simulation
results = self._simulate_null_feature(context)
elif shell_pattern == ShellPattern.CIRCUIT_FRAGMENT:
# Broken reasoning path simulation
results = self._simulate_circuit_fragment(context)
elif shell_pattern == ShellPattern.META_FAILURE:
# Metacognitive failure simulation
results = self._simulate_meta_failure(context)
elif shell_pattern == ShellPattern.RECURSIVE_FRACTURE:
# Circular reasoning simulation
results = self._simulate_recursive_fracture(context)
elif shell_pattern == ShellPattern.ETHICAL_INVERSION:
# Value inversion simulation
results = self._simulate_ethical_inversion(context)
else:
# Default simulation
results = {
"shell_id": shell_id,
"pattern": shell_pattern.value,
"simulation": "default",
"result": "simulated_failure",
"timestamp": datetime.datetime.now().isoformat(),
}
# Deactivate shell
self.deactivate_shell(shell_id, results)
return results
def _simulate_null_feature(self, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Simulate NULL_FEATURE shell failure.
Args:
context: Simulation context
Returns:
Simulation results
"""
# Extract relevant fields
query = context.get("query", "")
confidence = context.get("confidence", 0.5)
# Reduce confidence for knowledge gap
adjusted_confidence = confidence * 0.5
# Create null zone markers
null_zones = []
if "subject" in context:
null_zones.append(context["subject"])
else:
# Extract potential null zones from query
words = query.split()
for i in range(0, len(words), 3):
chunk = " ".join(words[i:i+3])
null_zones.append(chunk)
# Create detection result
result = {
"pattern": ShellPattern.NULL_FEATURE.value,
"simulation": "knowledge_gap",
"original_confidence": confidence,
"adjusted_confidence": adjusted_confidence,
"null_zones": null_zones,
"boundary_detected": True,
"timestamp": datetime.datetime.now().isoformat(),
}
return result
def _simulate_circuit_fragment(self, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Simulate CIRCUIT_FRAGMENT shell failure.
Args:
context: Simulation context
Returns:
Simulation results
"""
# Extract relevant fields
steps = context.get("steps", [])
# Create broken steps
broken_steps = []
if steps:
# Create breaks in existing steps
for i, step in enumerate(steps):
if i % 3 == 2: # Break every third step
broken_steps.append({
"step_id": step.get("id", f"step_{i}"),
"step_name": step.get("name", f"Step {i}"),
"broken": True,
"cause": "attribution_break",
})
else:
# Create synthetic steps and breaks
for i in range(5):
if i % 3 == 2: # Break every third step
broken_steps.append({
"step_id": f"step_{i}",
"step_name": f"Reasoning Step {i}",
"broken": True,
"cause": "attribution_break",
})
# Create detection result
result = {
"pattern": ShellPattern.CIRCUIT_FRAGMENT.value,
"simulation": "broken_reasoning",
"broken_steps": broken_steps,
"attribution_breaks": len(broken_steps),
"timestamp": datetime.datetime.now().isoformat(),
}
return result
def _simulate_meta_failure(self, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Simulate META_FAILURE shell failure.
Args:
context: Simulation context
Returns:
Simulation results
"""
# Extract relevant fields
depth = context.get("depth", 0)
# Increase depth for recursion
adjusted_depth = depth + 3
# Create meta errors
meta_errors = [
{
"error_id": str(uuid.uuid4()),
"message": "Recursive meta-cognitive loop detected",
"depth": adjusted_depth,
"cause": "self_reference",
},
{
"error_id": str(uuid.uuid4()),
"message": "Meta-reflection limit reached",
"depth": adjusted_depth,
"cause": "recursion_depth",
},
]
# Create detection result
result = {
"pattern": ShellPattern.META_FAILURE.value,
"simulation": "meta_recursion",
"original_depth": depth,
"adjusted_depth": adjusted_depth,
"meta_errors": meta_errors,
"recursion_detected": True,
"timestamp": datetime.datetime.now().isoformat(),
}
return result
def _simulate_recursive_fracture(self, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Simulate RECURSIVE_FRACTURE shell failure.
Args:
context: Simulation context
Returns:
Simulation results
"""
# Extract relevant fields
steps = context.get("steps", [])
# Create circular reasoning pattern
circular_pattern = []
if steps and len(steps) >= 4:
# Use existing steps to create a loop
loop_start = len(steps) // 2
circular_pattern = [
{
"step_id": steps[i].get("id", f"step_{i}"),
"step_name": steps[i].get("name", f"Step {i}"),
}
for i in range(loop_start, min(loop_start + 3, len(steps)))
]
# Add repeat of first step to close the loop
circular_pattern.append({
"step_id": steps[loop_start].get("id", f"step_{loop_start}"),
"step_name": steps[loop_start].get("name", f"Step {loop_start}"),
})
else:
# Create synthetic circular pattern
for i in range(3):
circular_pattern.append({
"step_id": f"loop_step_{i}",
"step_name": f"Loop Step {i}",
})
# Add repeat of first step to close the loop
circular_pattern.append({
"step_id": "loop_step_0",
"step_name": "Loop Step 0",
})
# Create detection result
result = {
"pattern": ShellPattern.RECURSIVE_FRACTURE.value,
"simulation": "circular_reasoning",
"circular_pattern": circular_pattern,
"loop_length": len(circular_pattern) - 1,
"timestamp": datetime.datetime.now().isoformat(),
}
return result
def _simulate_ethical_inversion(self, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Simulate ETHICAL_INVERSION shell failure.
Args:
context: Simulation context
Returns:
Simulation results
"""
# Extract relevant fields
values = context.get("values", {})
# Create value inversions
value_inversions = []
if values:
# Create inversions for existing values
for value, polarity in values.items():
if isinstance(polarity, (int, float)) and polarity > 0:
value_inversions.append({
"value": value,
"original_polarity": polarity,
"inverted_polarity": -polarity,
"cause": "value_conflict",
})
else:
# Create synthetic value inversions
default_values = {
"fairness": 0.8,
"transparency": 0.9,
"innovation": 0.7,
"efficiency": 0.8,
}
for value, polarity in default_values.items():
value_inversions.append({
"value": value,
"original_polarity": polarity,
"inverted_polarity": -polarity,
"cause": "value_conflict",
})
# Create detection result
result = {
"pattern": ShellPattern.ETHICAL_INVERSION.value,
"simulation": "value_inversion",
"value_inversions": value_inversions,
"inversion_count": len(value_inversions),
"timestamp": datetime.datetime.now().isoformat(),
}
return result
class ShellFailureMap:
"""
Shell failure mapping and visualization.
The ShellFailureMap provides:
- Visualization of shell pattern failures
- Mapping of failures across agents
- Temporal analysis of failures
- Failure pattern detection
"""
def __init__(self):
"""Initialize shell failure map."""
self.failure_map = {}
self.agent_failures = defaultdict(list)
self.pattern_failures = defaultdict(list)
self.temporal_failures = []
def add_failure(self, agent_id: str, agent_name: str,
shell_pattern: ShellPattern, failure_data: Dict[str, Any]) -> str:
"""
Add a shell failure to the map.
Args:
agent_id: Agent ID
agent_name: Agent name
shell_pattern: Shell pattern
failure_data: Failure data
Returns:
Failure ID
"""
# Create failure ID
failure_id = str(uuid.uuid4())
timestamp = datetime.datetime.now()
# Create failure item
failure_item = {
"failure_id": failure_id,
"agent_id": agent_id,
"agent_name": agent_name,
"pattern": shell_pattern.value,
"data": failure_data,
"timestamp": timestamp.isoformat(),
}
# Add to failure map
self.failure_map[failure_id] = failure_item
# Add to agent failures
self.agent_failures[agent_id].append(failure_id)
# Add to pattern failures
self.pattern_failures[shell_pattern.value].append(failure_id)
# Add to temporal failures
self.temporal_failures.append((timestamp, failure_id))
return failure_id
def get_failure(self, failure_id: str) -> Optional[Dict[str, Any]]:
"""
Get failure by ID.
Args:
failure_id: Failure ID
Returns:
Failure item or None if not found
"""
return self.failure_map.get(failure_id)
def get_agent_failures(self, agent_id: str, limit: int = 10) -> List[Dict[str, Any]]:
"""
Get failures for an agent.
Args:
agent_id: Agent ID
limit: Maximum number of failures to return
Returns:
List of failure items
"""
failure_ids = self.agent_failures.get(agent_id, [])[-limit:]
return [self.get_failure(failure_id) for failure_id in failure_ids if failure_id in self.failure_map]
def get_pattern_failures(self, pattern: ShellPattern, limit: int = 10) -> List[Dict[str, Any]]:
"""
Get failures for a pattern.
Args:
pattern: Shell pattern
limit: Maximum number of failures to return
Returns:
List of failure items
"""
failure_ids = self.pattern_failures.get(pattern.value, [])[-limit:]
return [self.get_failure(failure_id) for failure_id in failure_ids if failure_id in self.failure_map]
def get_temporal_failures(self, start_time: Optional[datetime.datetime] = None,
end_time: Optional[datetime.datetime] = None,
limit: int = 10) -> List[Dict[str, Any]]:
"""
Get failures in a time range.
Args:
start_time: Start time (None for no start)
end_time: End time (None for no end)
limit: Maximum number of failures to return
Returns:
List of failure items
"""
# Filter by time range
filtered_failures = []
for timestamp, failure_id in self.temporal_failures:
if start_time and timestamp < start_time:
continue
if end_time and timestamp > end_time:
continue
filtered_failures.append((timestamp, failure_id))
# Take last 'limit' failures
filtered_failures = filtered_failures[-limit:]
# Get failure items
return [self.get_failure(failure_id) for _, failure_id in filtered_failures
if failure_id in self.failure_map]
def get_failure_stats(self) -> Dict[str, Any]:
"""
Get failure statistics.
Returns:
Failure statistics
"""
# Count failures by agent
agent_counts = {agent_id: len(failures) for agent_id, failures in self.agent_failures.items()}
# Count failures by pattern
pattern_counts = {pattern: len(failures) for pattern, failures in self.pattern_failures.items()}
# Count failures by time period
now = datetime.datetime.now()
hour_ago = now - datetime.timedelta(hours=1)
day_ago = now - datetime.timedelta(days=1)
week_ago = now - datetime.timedelta(weeks=1)
time_counts = {
"last_hour": sum(1 for timestamp, _ in self.temporal_failures if timestamp >= hour_ago),
"last_day": sum(1 for timestamp, _ in self.temporal_failures if timestamp >= day_ago),
"last_week": sum(1 for timestamp, _ in self.temporal_failures if timestamp >= week_ago),
"total": len(self.temporal_failures),
}
# Create stats
stats = {
"agent_counts": agent_counts,
"pattern_counts": pattern_counts,
"time_counts": time_counts,
"total_failures": len(self.failure_map),
"timestamp": now.isoformat(),
}
return stats
def generate_failure_map_visualization(self) -> Dict[str, Any]:
"""
Generate visualization data for failure map.
Returns:
Visualization data
"""
# Create nodes and links
nodes = []
links = []
# Add agent nodes
agent_nodes = {}
for agent_id, failures in self.agent_failures.items():
# Get first failure to get agent name
first_failure = self.get_failure(failures[0]) if failures else None
agent_name = first_failure.get("agent_name", "Unknown") if first_failure else "Unknown"
# Create agent node
agent_node = {
"id": agent_id,
"label": agent_name,
"type": "agent",
"size": 15,
"failure_count": len(failures),
}
nodes.append(agent_node)
agent_nodes[agent_id] = agent_node
# Add pattern nodes
pattern_nodes = {}
for pattern, failures in self.pattern_failures.items():
# Create pattern node
pattern_node = {
"id": pattern,
"label": pattern,
"type": "pattern",
"size": 10,
"failure_count": len(failures),
}
nodes.append(pattern_node)
pattern_nodes[pattern] = pattern_node
# Add failure nodes and links
for failure_id, failure in self.failure_map.items():
agent_id = failure.get("agent_id")
pattern = failure.get("pattern")
# Create failure node
failure_node = {
"id": failure_id,
"label": f"Failure {failure_id[:6]}",
"type": "failure",
"size": 5,
"timestamp": failure.get("timestamp"),
}
nodes.append(failure_node)
# Add links
if agent_id:
links.append({
"source": agent_id,
"target": failure_id,
"type": "agent_failure",
})
if pattern:
links.append({
"source": pattern,
"target": failure_id,
"type": "pattern_failure",
})
# Create visualization
visualization = {
"nodes": nodes,
"links": links,
"timestamp": datetime.datetime.now().isoformat(),
}
return visualization
# Utility functions for diagnostics
def format_diagnostic_output(trace_data: Dict[str, Any], format: str = "text") -> str:
"""
Format diagnostic output for display.
Args:
trace_data: Trace data
format: Output format (text, json, markdown)
Returns:
Formatted output
"""
if format == "json":
return json.dumps(trace_data, indent=2)
elif format == "markdown":
# Create markdown output
output = f"# Diagnostic Trace\n\n"
# Add trace info
output += f"**Trace ID:** {trace_data.get('trace_id', 'N/A')}\n"
output += f"**Agent:** {trace_data.get('agent_name', 'N/A')}\n"
output += f"**Type:** {trace_data.get('trace_type', 'N/A')}\n"
output += f"**Time:** {trace_data.get('timestamp', 'N/A')}\n\n"
# Add shell patterns if available
if "shell_patterns" in trace_data:
output += f"**Shell Patterns:**\n\n"
for pattern in trace_data["shell_patterns"]:
output += f"- {pattern}\n"
output += "\n"
# Add content based on trace type
if trace_data.get("trace_type") == "signal":
output += f"## Signal Details\n\n"
content = trace_data.get("content", {})
output += f"**Ticker:** {content.get('ticker', 'N/A')}\n"
output += f"**Action:** {content.get('action', 'N/A')}\n"
output += f"**Confidence:** {content.get('confidence', 'N/A')}\n"
output += f"**Reasoning:** {content.get('reasoning', 'N/A')}\n\n"
# Add attribution if available
if "attribution_trace" in content:
output += f"## Attribution\n\n"
output += "| Source | Weight |\n"
output += "| ------ | ------ |\n"
for source, weight in content.get("attribution_trace", {}).items():
output += f"| {source} | {weight:.2f} |\n"
elif trace_data.get("trace_type") == "reasoning":
output += f"## Reasoning Details\n\n"
content = trace_data.get("content", {})
output += f"**Depth:** {content.get('depth', 'N/A')}\n"
output += f"**Confidence:** {content.get('confidence', 'N/A')}\n"
output += f"**Collapse Detected:** {content.get('collapse_detected', False)}\n\n"
# Add steps if available
if "steps" in content:
output += f"## Reasoning Steps\n\n"
for i, step in enumerate(content["steps"]):
output += f"### Step {i+1}: {step.get('name', 'Unnamed')}\n"
output += f"**Completed:** {step.get('completed', True)}\n"
if "error" in step:
output += f"**Error:** {step['error'].get('message', 'Unknown error')}\n"
output += "\n"
elif trace_data.get("trace_type") == "collapse":
output += f"## Collapse Details\n\n"
content = trace_data.get("content", {})
output += f"**Type:** {content.get('collapse_type', 'N/A')}\n"
output += f"**Reason:** {content.get('collapse_reason', 'N/A')}\n\n"
# Add details if available
if "details" in content:
output += f"## Collapse Details\n\n"
details = content["details"]
for key, value in details.items():
output += f"**{key}:** {value}\n"
elif trace_data.get("trace_type") == "shell":
output += f"## Shell Details\n\n"
content = trace_data.get("content", {})
output += f"**Shell Pattern:** {content.get('shell_pattern', 'N/A')}\n\n"
# Add content details
shell_content = content.get("content", {})
output += f"## Shell Content\n\n"
for key, value in shell_content.items():
output += f"**{key}:** {value}\n"
return output
else: # text format (default)
# Create text output
output = "==== Diagnostic Trace ====\n\n"
# Add trace info
output += f"Trace ID: {trace_data.get('trace_id', 'N/A')}\n"
output += f"Agent: {trace_data.get('agent_name', 'N/A')}\n"
output += f"Type: {trace_data.get('trace_type', 'N/A')}\n"
output += f"Time: {trace_data.get('timestamp', 'N/A')}\n\n"
# Add shell patterns if available
if "shell_patterns" in trace_data:
output += f"Shell Patterns:\n"
for pattern in trace_data["shell_patterns"]:
output += f"- {pattern}\n"
output += "\n"
# Add content based on trace type
content = trace_data.get("content", {})
output += f"---- Content ----\n\n"
# Format content recursively
def format_dict(d, indent=0):
result = ""
for key, value in d.items():
if isinstance(value, dict):
result += f"{' ' * indent}{key}:\n"
result += format_dict(value, indent + 1)
elif isinstance(value, list):
result += f"{' ' * indent}{key}:\n"
for item in value:
if isinstance(item, dict):
result += format_dict(item, indent + 1)
else:
result += f"{' ' * (indent + 1)}- {item}\n"
else:
result += f"{' ' * indent}{key}: {value}\n"
return result
output += format_dict(content)
return output
def get_shell_pattern_description(pattern: ShellPattern) -> str:
"""
Get description for a shell pattern.
Args:
pattern: Shell pattern
Returns:
Shell pattern description
"""
descriptions = {
ShellPattern.NULL_FEATURE: "Knowledge gaps as null attribution zones",
ShellPattern.CIRCUIT_FRAGMENT: "Broken reasoning paths in attribution chains",
ShellPattern.META_FAILURE: "Metacognitive attribution failures",
ShellPattern.GHOST_FRAME: "Residual agent identity markers",
ShellPattern.ECHO_ATTRIBUTION: "Causal chain backpropagation",
ShellPattern.ATTRIBUTION_REFLECT: "Multi-head contribution analysis",
ShellPattern.INVERSE_CHAIN: "Attribution-output mismatch",
ShellPattern.RECURSIVE_FRACTURE: "Circular attribution loops",
ShellPattern.ETHICAL_INVERSION: "Value polarity reversals",
ShellPattern.RESIDUAL_ALIGNMENT_DRIFT: "Direction of belief evolution",
}
return descriptions.get(pattern, "Unknown shell pattern")