add mae model (#15)
Browse files* add mae model
* push to hugging face
* minor cleanup
* more changes
* set mask ratio to 0
* successful validation
* rearrange
* remove testing code
* remove unused funtion
* add a predict method
* update to correct version of phenom-beta
* add Kian's PR suggestion
* add test
* add comment to download model
* add multiple channel test
* allow channelwise embs
* clean some dead code
* add reconstruction notebook with example. can run on CPU no prob
* fix up
* udpate notebook
* remove the need for hydra
---------
Co-authored-by: Laksh <laksh.arumugam@recursionpharma.com>
Co-authored-by: kian-kd <kian.kd@recursionpharma.com>
- .gitignore +32 -0
- generate_reconstructions.ipynb +0 -0
- huggingface_mae.py +293 -0
- mae_modules.py +2 -2
- models/phenom_beta_huggingface/config.json +85 -0
- normalizer.py +7 -0
- requirements.in +14 -0
- requirements.txt +213 -9
- sample/AA41_s1_1.jp2 +0 -0
- sample/AA41_s1_2.jp2 +0 -0
- sample/AA41_s1_3.jp2 +0 -0
- sample/AA41_s1_4.jp2 +0 -0
- sample/AA41_s1_5.jp2 +0 -0
- sample/AA41_s1_6.jp2 +0 -0
- test_huggingface_mae.py +32 -0
.gitignore
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# model artifacts
|
30 |
+
*.pickle
|
31 |
+
*.ckpt
|
32 |
+
*.safetensors
|
generate_reconstructions.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
huggingface_mae.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
7 |
+
|
8 |
+
from loss import FourierLoss
|
9 |
+
from normalizer import Normalizer
|
10 |
+
from mae_modules import CAMAEDecoder, MAEDecoder, MAEEncoder
|
11 |
+
from mae_utils import flatten_images
|
12 |
+
from vit import (
|
13 |
+
generate_2d_sincos_pos_embeddings,
|
14 |
+
sincos_positional_encoding_vit,
|
15 |
+
vit_small_patch16_256,
|
16 |
+
)
|
17 |
+
|
18 |
+
TensorDict = Dict[str, torch.Tensor]
|
19 |
+
|
20 |
+
|
21 |
+
class MAEConfig(PretrainedConfig):
|
22 |
+
model_type = "MAE"
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
mask_ratio=0.75,
|
27 |
+
encoder=None,
|
28 |
+
decoder=None,
|
29 |
+
loss=None,
|
30 |
+
optimizer=None,
|
31 |
+
input_norm=None,
|
32 |
+
fourier_loss=None,
|
33 |
+
fourier_loss_weight=0.0,
|
34 |
+
lr_scheduler=None,
|
35 |
+
use_MAE_weight_init=False,
|
36 |
+
crop_size=-1,
|
37 |
+
mask_fourier_loss=True,
|
38 |
+
return_channelwise_embeddings=False,
|
39 |
+
**kwargs,
|
40 |
+
):
|
41 |
+
super().__init__(**kwargs)
|
42 |
+
self.mask_ratio = mask_ratio
|
43 |
+
self.encoder = encoder
|
44 |
+
self.decoder = decoder
|
45 |
+
self.loss = loss
|
46 |
+
self.optimizer = optimizer
|
47 |
+
self.input_norm = input_norm
|
48 |
+
self.fourier_loss = fourier_loss
|
49 |
+
self.fourier_loss_weight = fourier_loss_weight
|
50 |
+
self.lr_scheduler = lr_scheduler
|
51 |
+
self.use_MAE_weight_init = use_MAE_weight_init
|
52 |
+
self.crop_size = crop_size
|
53 |
+
self.mask_fourier_loss = mask_fourier_loss
|
54 |
+
self.return_channelwise_embeddings = return_channelwise_embeddings
|
55 |
+
|
56 |
+
|
57 |
+
class MAEModel(PreTrainedModel):
|
58 |
+
config_class = MAEConfig
|
59 |
+
|
60 |
+
# Loss metrics
|
61 |
+
TOTAL_LOSS = "loss"
|
62 |
+
RECON_LOSS = "reconstruction_loss"
|
63 |
+
FOURIER_LOSS = "fourier_loss"
|
64 |
+
|
65 |
+
def __init__(self, config: MAEConfig):
|
66 |
+
super().__init__(config)
|
67 |
+
|
68 |
+
self.mask_ratio = config.mask_ratio
|
69 |
+
|
70 |
+
# Could use Hydra to instantiate instead
|
71 |
+
self.encoder = MAEEncoder(
|
72 |
+
vit_backbone=sincos_positional_encoding_vit(
|
73 |
+
vit_backbone=vit_small_patch16_256(global_pool="avg")
|
74 |
+
),
|
75 |
+
max_in_chans=11, # upper limit on number of input channels
|
76 |
+
channel_agnostic=True,
|
77 |
+
)
|
78 |
+
self.decoder = CAMAEDecoder(
|
79 |
+
depth=8,
|
80 |
+
embed_dim=512,
|
81 |
+
mlp_ratio=4,
|
82 |
+
norm_layer=nn.LayerNorm,
|
83 |
+
num_heads=16,
|
84 |
+
num_modalities=6,
|
85 |
+
qkv_bias=True,
|
86 |
+
tokens_per_modality=256,
|
87 |
+
)
|
88 |
+
self.input_norm = torch.nn.Sequential(
|
89 |
+
Normalizer(),
|
90 |
+
nn.InstanceNorm2d(None, affine=False, track_running_stats=False),
|
91 |
+
)
|
92 |
+
|
93 |
+
self.fourier_loss_weight = config.fourier_loss_weight
|
94 |
+
self.mask_fourier_loss = config.mask_fourier_loss
|
95 |
+
self.return_channelwise_embeddings = config.return_channelwise_embeddings
|
96 |
+
self.tokens_per_channel = 256 # hardcode the number of tokens per channel since we are patch16 crop 256
|
97 |
+
|
98 |
+
# loss stuff
|
99 |
+
self.loss = torch.nn.MSELoss(reduction="none")
|
100 |
+
|
101 |
+
self.fourier_loss = FourierLoss(num_multimodal_modalities=6)
|
102 |
+
if self.fourier_loss_weight > 0 and self.fourier_loss is None:
|
103 |
+
raise ValueError(
|
104 |
+
"FourierLoss weight is activated but no fourier_loss was defined in constructor"
|
105 |
+
)
|
106 |
+
elif self.fourier_loss_weight >= 1:
|
107 |
+
raise ValueError(
|
108 |
+
"FourierLoss weight is too large to do mixing factor, weight should be < 1"
|
109 |
+
)
|
110 |
+
|
111 |
+
self.patch_size = int(self.encoder.vit_backbone.patch_embed.patch_size[0])
|
112 |
+
|
113 |
+
# projection layer between the encoder and decoder
|
114 |
+
self.encoder_decoder_proj = nn.Linear(
|
115 |
+
self.encoder.embed_dim, self.decoder.embed_dim, bias=True
|
116 |
+
)
|
117 |
+
|
118 |
+
self.decoder_pred = nn.Linear(
|
119 |
+
self.decoder.embed_dim,
|
120 |
+
self.patch_size**2
|
121 |
+
* (1 if self.encoder.channel_agnostic else self.in_chans),
|
122 |
+
bias=True,
|
123 |
+
) # linear layer from decoder embedding to input dims
|
124 |
+
|
125 |
+
# overwrite decoder pos embeddings based on encoder params
|
126 |
+
self.decoder.pos_embeddings = generate_2d_sincos_pos_embeddings( # type: ignore[assignment]
|
127 |
+
self.decoder.embed_dim,
|
128 |
+
length=self.encoder.vit_backbone.patch_embed.grid_size[0],
|
129 |
+
use_class_token=self.encoder.vit_backbone.cls_token is not None,
|
130 |
+
num_modality=(
|
131 |
+
self.decoder.num_modalities if self.encoder.channel_agnostic else 1
|
132 |
+
),
|
133 |
+
)
|
134 |
+
|
135 |
+
if config.use_MAE_weight_init:
|
136 |
+
w = self.encoder.vit_backbone.patch_embed.proj.weight.data
|
137 |
+
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
138 |
+
|
139 |
+
torch.nn.init.normal_(self.encoder.vit_backbone.cls_token, std=0.02)
|
140 |
+
torch.nn.init.normal_(self.decoder.mask_token, std=0.02)
|
141 |
+
|
142 |
+
self.apply(self._MAE_init_weights)
|
143 |
+
|
144 |
+
def setup(self, stage: str) -> None:
|
145 |
+
super().setup(stage)
|
146 |
+
|
147 |
+
def _MAE_init_weights(self, m):
|
148 |
+
if isinstance(m, nn.Linear):
|
149 |
+
torch.nn.init.xavier_uniform_(m.weight)
|
150 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
151 |
+
nn.init.constant_(m.bias, 0)
|
152 |
+
elif isinstance(m, nn.LayerNorm):
|
153 |
+
nn.init.constant_(m.bias, 0)
|
154 |
+
nn.init.constant_(m.weight, 1.0)
|
155 |
+
|
156 |
+
@staticmethod
|
157 |
+
def decode_to_reconstruction(
|
158 |
+
encoder_latent: torch.Tensor,
|
159 |
+
ind_restore: torch.Tensor,
|
160 |
+
proj: torch.nn.Module,
|
161 |
+
decoder: MAEDecoder | CAMAEDecoder,
|
162 |
+
pred: torch.nn.Module,
|
163 |
+
) -> torch.Tensor:
|
164 |
+
"""Feed forward the encoder latent through the decoders necessary projections and transformations."""
|
165 |
+
decoder_latent_projection = proj(
|
166 |
+
encoder_latent
|
167 |
+
) # projection from encoder.embed_dim to decoder.embed_dim
|
168 |
+
decoder_tokens = decoder.forward_masked(
|
169 |
+
decoder_latent_projection, ind_restore
|
170 |
+
) # decoder.embed_dim output
|
171 |
+
predicted_reconstruction = pred(
|
172 |
+
decoder_tokens
|
173 |
+
) # linear projection to input dim
|
174 |
+
return predicted_reconstruction[:, 1:, :] # drop class token
|
175 |
+
|
176 |
+
def forward(
|
177 |
+
self, imgs: torch.Tensor, constant_noise: Union[torch.Tensor, None] = None
|
178 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
179 |
+
imgs = self.input_norm(imgs)
|
180 |
+
latent, mask, ind_restore = self.encoder.forward_masked(
|
181 |
+
imgs, self.mask_ratio, constant_noise
|
182 |
+
) # encoder blocks
|
183 |
+
reconstruction = self.decode_to_reconstruction(
|
184 |
+
latent,
|
185 |
+
ind_restore,
|
186 |
+
self.encoder_decoder_proj,
|
187 |
+
self.decoder,
|
188 |
+
self.decoder_pred,
|
189 |
+
)
|
190 |
+
return latent, reconstruction, mask
|
191 |
+
|
192 |
+
def compute_MAE_loss(
|
193 |
+
self,
|
194 |
+
reconstruction: torch.Tensor,
|
195 |
+
img: torch.Tensor,
|
196 |
+
mask: torch.Tensor,
|
197 |
+
) -> Tuple[torch.Tensor, Dict[str, float]]:
|
198 |
+
"""Computes final loss and returns specific values of component losses for metric reporting."""
|
199 |
+
loss_dict = {}
|
200 |
+
img = self.input_norm(img)
|
201 |
+
target_flattened = flatten_images(
|
202 |
+
img,
|
203 |
+
patch_size=self.patch_size,
|
204 |
+
channel_agnostic=self.encoder.channel_agnostic,
|
205 |
+
)
|
206 |
+
|
207 |
+
loss: torch.Tensor = self.loss(
|
208 |
+
reconstruction, target_flattened
|
209 |
+
) # should be with MSE or MAE (L1) with reduction='none'
|
210 |
+
loss = loss.mean(
|
211 |
+
dim=-1
|
212 |
+
) # average over embedding dim -> mean loss per patch (N,L)
|
213 |
+
loss = (loss * mask).sum() / mask.sum() # mean loss on masked patches only
|
214 |
+
loss_dict[self.RECON_LOSS] = loss.item()
|
215 |
+
|
216 |
+
# compute fourier loss
|
217 |
+
if self.fourier_loss_weight > 0:
|
218 |
+
floss: torch.Tensor = self.fourier_loss(reconstruction, target_flattened)
|
219 |
+
if not self.mask_fourier_loss:
|
220 |
+
floss = floss.mean()
|
221 |
+
else:
|
222 |
+
floss = floss.mean(dim=-1)
|
223 |
+
floss = (floss * mask).sum() / mask.sum()
|
224 |
+
|
225 |
+
loss_dict[self.FOURIER_LOSS] = floss.item()
|
226 |
+
|
227 |
+
# here we use a mixing factor to keep the loss magnitude appropriate with fourier
|
228 |
+
if self.fourier_loss_weight > 0:
|
229 |
+
loss = (1 - self.fourier_loss_weight) * loss + (
|
230 |
+
self.fourier_loss_weight * floss
|
231 |
+
)
|
232 |
+
return loss, loss_dict
|
233 |
+
|
234 |
+
def training_step(self, batch: TensorDict, batch_idx: int) -> TensorDict:
|
235 |
+
img = batch["pixels"]
|
236 |
+
latent, reconstruction, mask = self(img.clone())
|
237 |
+
full_loss, loss_dict = self.compute_MAE_loss(reconstruction, img.float(), mask)
|
238 |
+
return {
|
239 |
+
"loss": full_loss,
|
240 |
+
**loss_dict, # type: ignore[dict-item]
|
241 |
+
}
|
242 |
+
|
243 |
+
def validation_step(self, batch: TensorDict, batch_idx: int) -> TensorDict:
|
244 |
+
return self.training_step(batch, batch_idx)
|
245 |
+
|
246 |
+
def update_metrics(self, outputs: TensorDict, batch: TensorDict) -> None:
|
247 |
+
self.metrics["lr"].update(value=self.lr_scheduler.get_last_lr())
|
248 |
+
for key, value in outputs.items():
|
249 |
+
if key.endswith("loss"):
|
250 |
+
self.metrics[key].update(value)
|
251 |
+
|
252 |
+
def on_validation_batch_end( # type: ignore[override]
|
253 |
+
self,
|
254 |
+
outputs: TensorDict,
|
255 |
+
batch: TensorDict,
|
256 |
+
batch_idx: int,
|
257 |
+
dataloader_idx: int = 0,
|
258 |
+
) -> None:
|
259 |
+
super().on_validation_batch_end(outputs, batch, batch_idx, dataloader_idx)
|
260 |
+
|
261 |
+
def predict(self, imgs: torch.Tensor) -> torch.Tensor:
|
262 |
+
imgs = self.input_norm(imgs)
|
263 |
+
X = self.encoder.vit_backbone.forward_features(
|
264 |
+
imgs
|
265 |
+
) # 3d tensor N x num_tokens x dim
|
266 |
+
if self.return_channelwise_embeddings:
|
267 |
+
N, _, d = X.shape
|
268 |
+
num_channels = imgs.shape[1]
|
269 |
+
X_reshaped = X[:, 1:, :].view(N, num_channels, self.tokens_per_channel, d)
|
270 |
+
pooled_segments = X_reshaped.mean(
|
271 |
+
dim=2
|
272 |
+
) # Resulting shape: (N, num_channels, d)
|
273 |
+
latent = pooled_segments.view(N, num_channels * d).contiguous()
|
274 |
+
else:
|
275 |
+
latent = X[:, 1:, :].mean(dim=1) # 1 + 256 * C tokens
|
276 |
+
return latent
|
277 |
+
|
278 |
+
def save_pretrained(self, save_directory: str, **kwargs):
|
279 |
+
filename = kwargs.pop("filename", "model.safetensors")
|
280 |
+
modelpath = f"{save_directory}/{filename}"
|
281 |
+
self.config.save_pretrained(save_directory)
|
282 |
+
torch.save({"state_dict": self.state_dict()}, modelpath)
|
283 |
+
|
284 |
+
@classmethod
|
285 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
286 |
+
filename = kwargs.pop("filename", "model.safetensors")
|
287 |
+
|
288 |
+
modelpath = f"{pretrained_model_name_or_path}/{filename}"
|
289 |
+
config = MAEConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
290 |
+
state_dict = torch.load(modelpath, map_location="cpu")
|
291 |
+
model = cls(config, *model_args, **kwargs)
|
292 |
+
model.load_state_dict(state_dict["state_dict"])
|
293 |
+
return model
|
mae_modules.py
CHANGED
@@ -7,8 +7,8 @@ import torch.nn as nn
|
|
7 |
from timm.models.helpers import checkpoint_seq
|
8 |
from timm.models.vision_transformer import Block, Mlp, VisionTransformer
|
9 |
|
10 |
-
from
|
11 |
-
from
|
12 |
|
13 |
# If interested in training new MAEs, combine an encoder and decoder into a new module, and you should
|
14 |
# leverage the flattening and unflattening utilities as needed from mae_utils.py.
|
|
|
7 |
from timm.models.helpers import checkpoint_seq
|
8 |
from timm.models.vision_transformer import Block, Mlp, VisionTransformer
|
9 |
|
10 |
+
from masking import transformer_random_masking
|
11 |
+
from vit import channel_agnostic_vit
|
12 |
|
13 |
# If interested in training new MAEs, combine an encoder and decoder into a new module, and you should
|
14 |
# leverage the flattening and unflattening utilities as needed from mae_utils.py.
|
models/phenom_beta_huggingface/config.json
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"apply_loss_unmasked": false,
|
4 |
+
"architectures": [
|
5 |
+
"MAEModel"
|
6 |
+
],
|
7 |
+
"crop_size": -1,
|
8 |
+
"decoder": {
|
9 |
+
"_target_": "mae_modules.CAMAEDecoder",
|
10 |
+
"depth": 8,
|
11 |
+
"embed_dim": 512,
|
12 |
+
"mlp_ratio": 4,
|
13 |
+
"norm_layer": {
|
14 |
+
"_partial_": true,
|
15 |
+
"_target_": "torch.nn.LayerNorm",
|
16 |
+
"eps": 1e-06
|
17 |
+
},
|
18 |
+
"num_heads": 16,
|
19 |
+
"num_modalities": 6,
|
20 |
+
"qkv_bias": true,
|
21 |
+
"tokens_per_modality": 256
|
22 |
+
},
|
23 |
+
"encoder": {
|
24 |
+
"_target_": "mae_modules.MAEEncoder",
|
25 |
+
"channel_agnostic": true,
|
26 |
+
"max_in_chans": 11,
|
27 |
+
"vit_backbone": {
|
28 |
+
"_target_": "vit.sincos_positional_encoding_vit",
|
29 |
+
"vit_backbone": {
|
30 |
+
"_target_": "vit.vit_small_patch16_256",
|
31 |
+
"global_pool": "avg"
|
32 |
+
}
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"fourier_loss": {
|
36 |
+
"_target_": "loss.FourierLoss",
|
37 |
+
"num_multimodal_modalities": 6
|
38 |
+
},
|
39 |
+
"fourier_loss_weight": 0.0,
|
40 |
+
"input_norm": {
|
41 |
+
"_args_": [
|
42 |
+
{
|
43 |
+
"_target_": "normalizer.Normalizer"
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"_target_": "torch.nn.InstanceNorm2d",
|
47 |
+
"affine": false,
|
48 |
+
"num_features": null,
|
49 |
+
"track_running_stats": false
|
50 |
+
}
|
51 |
+
],
|
52 |
+
"_target_": "torch.nn.Sequential"
|
53 |
+
},
|
54 |
+
"layernorm_unfreeze": true,
|
55 |
+
"loss": {
|
56 |
+
"_target_": "torch.nn.MSELoss",
|
57 |
+
"reduction": "none"
|
58 |
+
},
|
59 |
+
"lr_scheduler": {
|
60 |
+
"_partial_": true,
|
61 |
+
"_target_": "torch.optim.lr_scheduler.OneCycleLR",
|
62 |
+
"anneal_strategy": "cos",
|
63 |
+
"max_lr": 0.0001,
|
64 |
+
"pct_start": 0.1
|
65 |
+
},
|
66 |
+
"mask_fourier_loss": true,
|
67 |
+
"mask_ratio": 0.0,
|
68 |
+
"model_type": "MAE",
|
69 |
+
"norm_pix_loss": false,
|
70 |
+
"num_blocks_to_freeze": 0,
|
71 |
+
"optimizer": {
|
72 |
+
"_partial_": true,
|
73 |
+
"_target_": "timm.optim.lion.Lion",
|
74 |
+
"betas": [
|
75 |
+
0.9,
|
76 |
+
0.95
|
77 |
+
],
|
78 |
+
"lr": 0.0001,
|
79 |
+
"weight_decay": 0.05
|
80 |
+
},
|
81 |
+
"torch_dtype": "float32",
|
82 |
+
"transformers_version": "4.46.1",
|
83 |
+
"trim_encoder_blocks": null,
|
84 |
+
"use_MAE_weight_init": false
|
85 |
+
}
|
normalizer.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class Normalizer(torch.nn.Module):
|
5 |
+
def forward(self, pixels: torch.Tensor) -> torch.Tensor:
|
6 |
+
pixels = pixels.float()
|
7 |
+
return pixels / 255.0
|
requirements.in
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface-hub
|
2 |
+
timm
|
3 |
+
torch>=2.3
|
4 |
+
torchmetrics
|
5 |
+
torchvision
|
6 |
+
tqdm
|
7 |
+
transformers
|
8 |
+
xformers
|
9 |
+
zarr
|
10 |
+
hydra-core
|
11 |
+
pytorch-lightning>=2.1
|
12 |
+
isort
|
13 |
+
ruff
|
14 |
+
pytest
|
requirements.txt
CHANGED
@@ -1,9 +1,213 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# This file is autogenerated by pip-compile with Python 3.10
|
3 |
+
# by the following command:
|
4 |
+
#
|
5 |
+
# pip-compile --no-emit-index-url --output-file=requirements.txt requirements.in
|
6 |
+
#
|
7 |
+
--trusted-host pypi.ngc.nvidia.com
|
8 |
+
|
9 |
+
aiohappyeyeballs==2.4.3
|
10 |
+
# via aiohttp
|
11 |
+
aiohttp==3.10.10
|
12 |
+
# via fsspec
|
13 |
+
aiosignal==1.3.1
|
14 |
+
# via aiohttp
|
15 |
+
antlr4-python3-runtime==4.9.3
|
16 |
+
# via
|
17 |
+
# hydra-core
|
18 |
+
# omegaconf
|
19 |
+
asciitree==0.3.3
|
20 |
+
# via zarr
|
21 |
+
async-timeout==4.0.3
|
22 |
+
# via aiohttp
|
23 |
+
attrs==24.2.0
|
24 |
+
# via aiohttp
|
25 |
+
certifi==2024.8.30
|
26 |
+
# via requests
|
27 |
+
charset-normalizer==3.4.0
|
28 |
+
# via requests
|
29 |
+
exceptiongroup==1.2.2
|
30 |
+
# via pytest
|
31 |
+
fasteners==0.19
|
32 |
+
# via zarr
|
33 |
+
filelock==3.16.1
|
34 |
+
# via
|
35 |
+
# huggingface-hub
|
36 |
+
# torch
|
37 |
+
# transformers
|
38 |
+
# triton
|
39 |
+
frozenlist==1.4.1
|
40 |
+
# via
|
41 |
+
# aiohttp
|
42 |
+
# aiosignal
|
43 |
+
fsspec[http]==2024.10.0
|
44 |
+
# via
|
45 |
+
# huggingface-hub
|
46 |
+
# pytorch-lightning
|
47 |
+
# torch
|
48 |
+
huggingface-hub==0.26.1
|
49 |
+
# via
|
50 |
+
# -r requirements.in
|
51 |
+
# timm
|
52 |
+
# tokenizers
|
53 |
+
# transformers
|
54 |
+
hydra-core==1.3.2
|
55 |
+
# via -r requirements.in
|
56 |
+
idna==3.10
|
57 |
+
# via
|
58 |
+
# requests
|
59 |
+
# yarl
|
60 |
+
iniconfig==2.0.0
|
61 |
+
# via pytest
|
62 |
+
isort==5.13.2
|
63 |
+
# via -r requirements.in
|
64 |
+
jinja2==3.1.4
|
65 |
+
# via torch
|
66 |
+
lightning-utilities==0.11.8
|
67 |
+
# via
|
68 |
+
# pytorch-lightning
|
69 |
+
# torchmetrics
|
70 |
+
markupsafe==3.0.2
|
71 |
+
# via jinja2
|
72 |
+
mpmath==1.3.0
|
73 |
+
# via sympy
|
74 |
+
multidict==6.1.0
|
75 |
+
# via
|
76 |
+
# aiohttp
|
77 |
+
# yarl
|
78 |
+
networkx==3.4.2
|
79 |
+
# via torch
|
80 |
+
numcodecs==0.13.1
|
81 |
+
# via zarr
|
82 |
+
numpy==1.26.4
|
83 |
+
# via
|
84 |
+
# numcodecs
|
85 |
+
# torchmetrics
|
86 |
+
# torchvision
|
87 |
+
# transformers
|
88 |
+
# xformers
|
89 |
+
# zarr
|
90 |
+
nvidia-cublas-cu12==12.4.5.8
|
91 |
+
# via
|
92 |
+
# nvidia-cudnn-cu12
|
93 |
+
# nvidia-cusolver-cu12
|
94 |
+
# torch
|
95 |
+
nvidia-cuda-cupti-cu12==12.4.127
|
96 |
+
# via torch
|
97 |
+
nvidia-cuda-nvrtc-cu12==12.4.127
|
98 |
+
# via torch
|
99 |
+
nvidia-cuda-runtime-cu12==12.4.127
|
100 |
+
# via torch
|
101 |
+
nvidia-cudnn-cu12==9.1.0.70
|
102 |
+
# via torch
|
103 |
+
nvidia-cufft-cu12==11.2.1.3
|
104 |
+
# via torch
|
105 |
+
nvidia-curand-cu12==10.3.5.147
|
106 |
+
# via torch
|
107 |
+
nvidia-cusolver-cu12==11.6.1.9
|
108 |
+
# via torch
|
109 |
+
nvidia-cusparse-cu12==12.3.1.170
|
110 |
+
# via
|
111 |
+
# nvidia-cusolver-cu12
|
112 |
+
# torch
|
113 |
+
nvidia-nccl-cu12==2.21.5
|
114 |
+
# via torch
|
115 |
+
nvidia-nvjitlink-cu12==12.4.127
|
116 |
+
# via
|
117 |
+
# nvidia-cusolver-cu12
|
118 |
+
# nvidia-cusparse-cu12
|
119 |
+
# torch
|
120 |
+
nvidia-nvtx-cu12==12.4.127
|
121 |
+
# via torch
|
122 |
+
omegaconf==2.3.0
|
123 |
+
# via hydra-core
|
124 |
+
packaging==24.1
|
125 |
+
# via
|
126 |
+
# huggingface-hub
|
127 |
+
# hydra-core
|
128 |
+
# lightning-utilities
|
129 |
+
# pytest
|
130 |
+
# pytorch-lightning
|
131 |
+
# torchmetrics
|
132 |
+
# transformers
|
133 |
+
pillow==11.0.0
|
134 |
+
# via torchvision
|
135 |
+
pluggy==1.5.0
|
136 |
+
# via pytest
|
137 |
+
propcache==0.2.0
|
138 |
+
# via yarl
|
139 |
+
pytest==8.3.3
|
140 |
+
# via -r requirements.in
|
141 |
+
pytorch-lightning==2.4.0
|
142 |
+
# via -r requirements.in
|
143 |
+
pyyaml==6.0.2
|
144 |
+
# via
|
145 |
+
# huggingface-hub
|
146 |
+
# omegaconf
|
147 |
+
# pytorch-lightning
|
148 |
+
# timm
|
149 |
+
# transformers
|
150 |
+
regex==2024.9.11
|
151 |
+
# via transformers
|
152 |
+
requests==2.32.3
|
153 |
+
# via
|
154 |
+
# huggingface-hub
|
155 |
+
# transformers
|
156 |
+
ruff==0.7.0
|
157 |
+
# via -r requirements.in
|
158 |
+
safetensors==0.4.5
|
159 |
+
# via
|
160 |
+
# timm
|
161 |
+
# transformers
|
162 |
+
sympy==1.13.1
|
163 |
+
# via torch
|
164 |
+
timm==1.0.11
|
165 |
+
# via -r requirements.in
|
166 |
+
tokenizers==0.20.1
|
167 |
+
# via transformers
|
168 |
+
tomli==2.0.2
|
169 |
+
# via pytest
|
170 |
+
torch==2.5.0
|
171 |
+
# via
|
172 |
+
# -r requirements.in
|
173 |
+
# pytorch-lightning
|
174 |
+
# timm
|
175 |
+
# torchmetrics
|
176 |
+
# torchvision
|
177 |
+
# xformers
|
178 |
+
torchmetrics==1.5.0
|
179 |
+
# via
|
180 |
+
# -r requirements.in
|
181 |
+
# pytorch-lightning
|
182 |
+
torchvision==0.20.0
|
183 |
+
# via
|
184 |
+
# -r requirements.in
|
185 |
+
# timm
|
186 |
+
tqdm==4.66.5
|
187 |
+
# via
|
188 |
+
# -r requirements.in
|
189 |
+
# huggingface-hub
|
190 |
+
# pytorch-lightning
|
191 |
+
# transformers
|
192 |
+
transformers==4.45.2
|
193 |
+
# via -r requirements.in
|
194 |
+
triton==3.1.0
|
195 |
+
# via torch
|
196 |
+
typing-extensions==4.12.2
|
197 |
+
# via
|
198 |
+
# huggingface-hub
|
199 |
+
# lightning-utilities
|
200 |
+
# multidict
|
201 |
+
# pytorch-lightning
|
202 |
+
# torch
|
203 |
+
urllib3==2.2.3
|
204 |
+
# via requests
|
205 |
+
xformers==0.0.28.post2
|
206 |
+
# via -r requirements.in
|
207 |
+
yarl==1.16.0
|
208 |
+
# via aiohttp
|
209 |
+
zarr==2.18.3
|
210 |
+
# via -r requirements.in
|
211 |
+
|
212 |
+
# The following packages are considered to be unsafe in a requirements file:
|
213 |
+
# setuptools
|
sample/AA41_s1_1.jp2
ADDED
|
sample/AA41_s1_2.jp2
ADDED
|
sample/AA41_s1_3.jp2
ADDED
|
sample/AA41_s1_4.jp2
ADDED
|
sample/AA41_s1_5.jp2
ADDED
|
sample/AA41_s1_6.jp2
ADDED
|
test_huggingface_mae.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from huggingface_mae import MAEModel
|
5 |
+
|
6 |
+
huggingface_phenombeta_model_dir = "models/phenom_beta_huggingface"
|
7 |
+
# huggingface_modelpath = "recursionpharma/test-pb-model"
|
8 |
+
|
9 |
+
|
10 |
+
@pytest.fixture
|
11 |
+
def huggingface_model():
|
12 |
+
# Make sure you have the model/config downloaded from https://huggingface.co/recursionpharma/test-pb-model to this directory
|
13 |
+
# huggingface-cli download recursionpharma/test-pb-model --local-dir=models/phenom_beta_huggingface
|
14 |
+
huggingface_model = MAEModel.from_pretrained(huggingface_phenombeta_model_dir)
|
15 |
+
huggingface_model.eval()
|
16 |
+
return huggingface_model
|
17 |
+
|
18 |
+
|
19 |
+
@pytest.mark.parametrize("C", [1, 4, 6, 11])
|
20 |
+
@pytest.mark.parametrize("return_channelwise_embeddings", [True, False])
|
21 |
+
def test_model_predict(huggingface_model, C, return_channelwise_embeddings):
|
22 |
+
example_input_array = torch.randint(
|
23 |
+
low=0,
|
24 |
+
high=255,
|
25 |
+
size=(2, C, 256, 256),
|
26 |
+
dtype=torch.uint8,
|
27 |
+
device=huggingface_model.device,
|
28 |
+
)
|
29 |
+
huggingface_model.return_channelwise_embeddings = return_channelwise_embeddings
|
30 |
+
embeddings = huggingface_model.predict(example_input_array)
|
31 |
+
expected_output_dim = 384 * C if return_channelwise_embeddings else 384
|
32 |
+
assert embeddings.shape == (2, expected_output_dim)
|