OpenPhenom / mae_utils.py
recursionaut's picture
testing files upload (#7)
6ded986 verified
raw
history blame
2.26 kB
# © Recursion Pharmaceuticals 2024
import math
import torch
def flatten_images(
img: torch.Tensor, patch_size: int, channel_agnostic: bool = False
) -> torch.Tensor:
"""
Flattens 2D images into tokens with the same pixel values
Parameters
----------
img : input image tensor (N, C, H, W)
Returns
-------
flattened_img: flattened image tensor (N, L, patch_size**2 * C)
"""
if (img.shape[2] != img.shape[3]) or (img.shape[2] % patch_size != 0):
raise ValueError("image H must equal image W and be divisible by patch_size")
in_chans = img.shape[1]
h = w = int(img.shape[2] // patch_size)
x = img.reshape(shape=(img.shape[0], in_chans, h, patch_size, w, patch_size))
if channel_agnostic:
x = torch.permute(x, (0, 1, 2, 4, 3, 5)) # NCHPWQ -> NCHWPQ
x = x.reshape(shape=(img.shape[0], in_chans * h * w, int(patch_size**2)))
else:
x = torch.permute(x, (0, 2, 4, 3, 5, 1)) # NCHPWQ -> NHWPQC
x = x.reshape(shape=(img.shape[0], h * w, int(patch_size**2 * in_chans)))
return x
def unflatten_tokens(
tokens: torch.Tensor,
patch_size: int,
num_modalities: int = 1,
channel_agnostic: bool = False,
) -> torch.Tensor:
"""
Unflattens tokens (N,L,patch_size**2 * C) into image tensor (N,C,H,W) with the pixel values
Parameters
----------
tokens : input token tensor (N,L,patch_size**2 * C)
Returns
-------
img: image tensor (N,C,H,W)
"""
if num_modalities > 1 and not channel_agnostic:
raise ValueError("Multiple modalities requires channel agnostic unflattening.")
h = w = int(math.sqrt(tokens.shape[1] // num_modalities))
if h * w != (tokens.shape[1] // num_modalities):
raise ValueError("sqrt of number of tokens not integer")
if channel_agnostic:
x = tokens.reshape(shape=(tokens.shape[0], -1, h, w, patch_size, patch_size))
x = torch.permute(x, (0, 1, 2, 4, 3, 5)) # NCHWPQ -> NCHPWQ
else:
x = tokens.reshape(shape=(tokens.shape[0], h, w, patch_size, patch_size, -1))
x = torch.permute(x, (0, 5, 1, 3, 2, 4)) # NHWPQC -> NCHPWQ
img = x.reshape(shape=(x.shape[0], -1, h * patch_size, h * patch_size))
return img