reasonwang commited on
Commit
f68bfc4
1 Parent(s): fa8ec68

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -0
README.md CHANGED
@@ -1,3 +1,27 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+
5
+ Out repository [flan-alpaca-lora](https://github.com/Reason-Wang/flan-alpaca-lora) contains the details to train flan-t5 with [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) instructions and [low-rank adaptation](https://arxiv.org/abs/2106.09685).
6
+
7
+ You can use the following code easily.
8
+
9
+ Usage:
10
+
11
+ ```python
12
+ import transformers
13
+ from peft import PeftModel
14
+ import torch
15
+
16
+ model_name = "google/flan-t5-xxl"; peft_model_id = "reasonwang/flan-alpaca-lora-xxl"
17
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
18
+ base_model = transformers.AutoModelForSeq2SeqLM.from_pretrained(model_name, use_cache=False, load_in_8bit=True, torch_dtype=torch.float16, device_map={"": 0})
19
+ peft_model = PeftModel.from_pretrained(base_model, peft_model_id, device_map={"": 0})
20
+
21
+ inputs = tokenizer("List a few tips to get good scores in math.", return_tensors="pt")
22
+ for k, v in inputs.items():
23
+ inputs[k] = v.to("cuda")
24
+ outputs = peft_model.generate(**inputs, max_length=128, do_sample=True)
25
+ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
26
+
27
+ ```