real-jiakai
commited on
Commit
•
cf30567
1
Parent(s):
61fea97
Upload folder using huggingface_hub
Browse files- .gitignore +2 -0
- README.md +145 -0
- all_results.json +15 -0
- config.json +27 -0
- eval_results.json +9 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- train_results.json +9 -0
- trainer_state.json +231 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
checkpoint-*/
|
2 |
+
.ipynb_checkpoints
|
README.md
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
license: mit
|
6 |
+
base_model: FacebookAI/roberta-base
|
7 |
+
tags:
|
8 |
+
- generated_from_trainer
|
9 |
+
datasets:
|
10 |
+
- swag
|
11 |
+
metrics:
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: swag_base
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Multiple Choice
|
18 |
+
type: multiple-choice
|
19 |
+
dataset:
|
20 |
+
name: SWAG
|
21 |
+
type: swag
|
22 |
+
args: regular
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.7521243691444397
|
27 |
+
---
|
28 |
+
|
29 |
+
# swag_base
|
30 |
+
|
31 |
+
This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the SWAG (Situations With Adversarial Generations) dataset.
|
32 |
+
|
33 |
+
## Model description
|
34 |
+
|
35 |
+
The model is designed to perform multiple-choice reasoning about real-world situations. Given a context and four possible continuations, it predicts the most plausible ending based on common sense understanding.
|
36 |
+
|
37 |
+
Key Features:
|
38 |
+
- Base model: RoBERTa-base
|
39 |
+
- Task: Multiple Choice Prediction
|
40 |
+
- Training dataset: SWAG
|
41 |
+
- Performance: 75.21% accuracy on evaluation set
|
42 |
+
|
43 |
+
## Training Procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
- Learning rate: 5e-05
|
47 |
+
- Batch size: 16
|
48 |
+
- Number of epochs: 3
|
49 |
+
- Optimizer: AdamW
|
50 |
+
- Learning rate scheduler: Linear
|
51 |
+
- Training samples: 73,546
|
52 |
+
- Training time: 17m 53s
|
53 |
+
|
54 |
+
### Training Results
|
55 |
+
- Training loss: 0.73
|
56 |
+
- Evaluation loss: 0.7362
|
57 |
+
- Evaluation accuracy: 0.7521
|
58 |
+
- Training samples/second: 205.623
|
59 |
+
- Training steps/second: 12.852
|
60 |
+
|
61 |
+
## Usage Example
|
62 |
+
|
63 |
+
Here's how to use the model:
|
64 |
+
|
65 |
+
```python
|
66 |
+
from transformers import AutoTokenizer, AutoModelForMultipleChoice
|
67 |
+
import torch
|
68 |
+
|
69 |
+
# Load model and tokenizer
|
70 |
+
model_path = "real-jiakai/roberta-base-uncased-finetuned-swag"
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
72 |
+
model = AutoModelForMultipleChoice.from_pretrained(model_path)
|
73 |
+
|
74 |
+
# Example scenarios
|
75 |
+
test_examples = [
|
76 |
+
{
|
77 |
+
'context': "Stephen Curry dribbles the ball at the three-point line",
|
78 |
+
'endings': [
|
79 |
+
"He quickly releases a perfect shot that swishes through the net", # Most plausible
|
80 |
+
"He suddenly starts dancing ballet on the court",
|
81 |
+
"He transforms the basketball into a pizza",
|
82 |
+
"He flies to the moon with the basketball"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
'context': "Elon Musk walks into a SpaceX facility and looks at a rocket",
|
87 |
+
'endings': [
|
88 |
+
"He discusses technical details with the engineering team", # Most plausible
|
89 |
+
"He turns the rocket into a giant chocolate bar",
|
90 |
+
"He starts playing basketball with the rocket",
|
91 |
+
"He teaches the rocket to speak French"
|
92 |
+
]
|
93 |
+
}
|
94 |
+
]
|
95 |
+
|
96 |
+
def predict_swag(context, endings, model, tokenizer):
|
97 |
+
encoding = tokenizer(
|
98 |
+
[context] * 4,
|
99 |
+
endings,
|
100 |
+
truncation=True,
|
101 |
+
max_length=128,
|
102 |
+
padding="max_length",
|
103 |
+
return_tensors="pt"
|
104 |
+
)
|
105 |
+
|
106 |
+
input_ids = encoding['input_ids'].unsqueeze(0)
|
107 |
+
attention_mask = encoding['attention_mask'].unsqueeze(0)
|
108 |
+
|
109 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
110 |
+
logits = outputs.logits
|
111 |
+
|
112 |
+
predicted_idx = torch.argmax(logits).item()
|
113 |
+
|
114 |
+
return {
|
115 |
+
'context': context,
|
116 |
+
'predicted_ending': endings[predicted_idx],
|
117 |
+
'probabilities': torch.softmax(logits, dim=1)[0].tolist()
|
118 |
+
}
|
119 |
+
```
|
120 |
+
|
121 |
+
## Limitations and Biases
|
122 |
+
|
123 |
+
The model's performance is limited by its training data and may not generalize well to all domains
|
124 |
+
Performance might vary depending on the complexity and domain of the input scenarios
|
125 |
+
The model may exhibit biases present in the training data
|
126 |
+
|
127 |
+
## Framework versions
|
128 |
+
|
129 |
+
Transformers 4.47.0.dev0
|
130 |
+
PyTorch 2.5.1+cu124
|
131 |
+
Datasets 3.1.0
|
132 |
+
Tokenizers 0.20.3
|
133 |
+
|
134 |
+
## Citation
|
135 |
+
|
136 |
+
If you use this model, please cite:
|
137 |
+
|
138 |
+
```
|
139 |
+
@inproceedings{zellers2018swagaf,
|
140 |
+
title={SWAG: A Large-Scale Adversarial Dataset for Grounded Commonsense Inference},
|
141 |
+
author={Zellers, Rowan and Bisk, Yonatan and Schwartz, Roy and Choi, Yejin},
|
142 |
+
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
|
143 |
+
year={2018}
|
144 |
+
}
|
145 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.7521243691444397,
|
4 |
+
"eval_loss": 0.7361685037612915,
|
5 |
+
"eval_runtime": 28.3884,
|
6 |
+
"eval_samples": 20006,
|
7 |
+
"eval_samples_per_second": 704.725,
|
8 |
+
"eval_steps_per_second": 44.067,
|
9 |
+
"total_flos": 2.508085260375571e+16,
|
10 |
+
"train_loss": 0.7300247143699852,
|
11 |
+
"train_runtime": 1073.0221,
|
12 |
+
"train_samples": 73546,
|
13 |
+
"train_samples_per_second": 205.623,
|
14 |
+
"train_steps_per_second": 12.852
|
15 |
+
}
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "FacebookAI/roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForMultipleChoice"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.47.0.dev0",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 50265
|
27 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.7521243691444397,
|
4 |
+
"eval_loss": 0.7361685037612915,
|
5 |
+
"eval_runtime": 28.3884,
|
6 |
+
"eval_samples": 20006,
|
7 |
+
"eval_samples_per_second": 704.725,
|
8 |
+
"eval_steps_per_second": 44.067
|
9 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b639335e7e79363a1eb5ae188010faec74ac19c1f3fc70c6b41da563f6ac74a1
|
3 |
+
size 498609724
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": false,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"errors": "replace",
|
50 |
+
"extra_special_tokens": {},
|
51 |
+
"mask_token": "<mask>",
|
52 |
+
"model_max_length": 512,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"sep_token": "</s>",
|
55 |
+
"tokenizer_class": "RobertaTokenizer",
|
56 |
+
"trim_offsets": true,
|
57 |
+
"unk_token": "<unk>"
|
58 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"total_flos": 2.508085260375571e+16,
|
4 |
+
"train_loss": 0.7300247143699852,
|
5 |
+
"train_runtime": 1073.0221,
|
6 |
+
"train_samples": 73546,
|
7 |
+
"train_samples_per_second": 205.623,
|
8 |
+
"train_steps_per_second": 12.852
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 13791,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.10876658690450294,
|
13 |
+
"grad_norm": 7.74190092086792,
|
14 |
+
"learning_rate": 4.818722355159162e-05,
|
15 |
+
"loss": 1.3121,
|
16 |
+
"step": 500
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.2175331738090059,
|
20 |
+
"grad_norm": 21.71584129333496,
|
21 |
+
"learning_rate": 4.637444710318324e-05,
|
22 |
+
"loss": 1.1551,
|
23 |
+
"step": 1000
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.3262997607135088,
|
27 |
+
"grad_norm": 14.698501586914062,
|
28 |
+
"learning_rate": 4.4561670654774854e-05,
|
29 |
+
"loss": 1.0899,
|
30 |
+
"step": 1500
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.4350663476180118,
|
34 |
+
"grad_norm": 12.033799171447754,
|
35 |
+
"learning_rate": 4.2748894206366476e-05,
|
36 |
+
"loss": 1.054,
|
37 |
+
"step": 2000
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.5438329345225147,
|
41 |
+
"grad_norm": 8.601971626281738,
|
42 |
+
"learning_rate": 4.093611775795809e-05,
|
43 |
+
"loss": 1.015,
|
44 |
+
"step": 2500
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.6525995214270176,
|
48 |
+
"grad_norm": 12.497455596923828,
|
49 |
+
"learning_rate": 3.912334130954971e-05,
|
50 |
+
"loss": 0.9868,
|
51 |
+
"step": 3000
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.7613661083315205,
|
55 |
+
"grad_norm": 17.868608474731445,
|
56 |
+
"learning_rate": 3.731056486114133e-05,
|
57 |
+
"loss": 0.9785,
|
58 |
+
"step": 3500
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.8701326952360235,
|
62 |
+
"grad_norm": 9.991225242614746,
|
63 |
+
"learning_rate": 3.549778841273294e-05,
|
64 |
+
"loss": 0.9544,
|
65 |
+
"step": 4000
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.9788992821405265,
|
69 |
+
"grad_norm": 30.770978927612305,
|
70 |
+
"learning_rate": 3.368501196432456e-05,
|
71 |
+
"loss": 0.9245,
|
72 |
+
"step": 4500
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 1.0876658690450294,
|
76 |
+
"grad_norm": 23.796464920043945,
|
77 |
+
"learning_rate": 3.187223551591618e-05,
|
78 |
+
"loss": 0.7713,
|
79 |
+
"step": 5000
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 1.1964324559495323,
|
83 |
+
"grad_norm": 24.789031982421875,
|
84 |
+
"learning_rate": 3.0059459067507794e-05,
|
85 |
+
"loss": 0.7294,
|
86 |
+
"step": 5500
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 1.3051990428540352,
|
90 |
+
"grad_norm": 18.538000106811523,
|
91 |
+
"learning_rate": 2.8246682619099413e-05,
|
92 |
+
"loss": 0.7132,
|
93 |
+
"step": 6000
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 1.4139656297585381,
|
97 |
+
"grad_norm": 15.591426849365234,
|
98 |
+
"learning_rate": 2.643390617069103e-05,
|
99 |
+
"loss": 0.7076,
|
100 |
+
"step": 6500
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 1.5227322166630413,
|
104 |
+
"grad_norm": 22.807159423828125,
|
105 |
+
"learning_rate": 2.462112972228265e-05,
|
106 |
+
"loss": 0.7153,
|
107 |
+
"step": 7000
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 1.6314988035675442,
|
111 |
+
"grad_norm": 11.409658432006836,
|
112 |
+
"learning_rate": 2.2808353273874268e-05,
|
113 |
+
"loss": 0.6954,
|
114 |
+
"step": 7500
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.740265390472047,
|
118 |
+
"grad_norm": 20.154701232910156,
|
119 |
+
"learning_rate": 2.0995576825465886e-05,
|
120 |
+
"loss": 0.707,
|
121 |
+
"step": 8000
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.84903197737655,
|
125 |
+
"grad_norm": 17.02855110168457,
|
126 |
+
"learning_rate": 1.91828003770575e-05,
|
127 |
+
"loss": 0.6715,
|
128 |
+
"step": 8500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 1.957798564281053,
|
132 |
+
"grad_norm": 19.347368240356445,
|
133 |
+
"learning_rate": 1.737002392864912e-05,
|
134 |
+
"loss": 0.6609,
|
135 |
+
"step": 9000
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 2.066565151185556,
|
139 |
+
"grad_norm": 18.68759536743164,
|
140 |
+
"learning_rate": 1.5557247480240738e-05,
|
141 |
+
"loss": 0.5354,
|
142 |
+
"step": 9500
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 2.1753317380900588,
|
146 |
+
"grad_norm": 15.24686050415039,
|
147 |
+
"learning_rate": 1.3744471031832355e-05,
|
148 |
+
"loss": 0.4594,
|
149 |
+
"step": 10000
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 2.2840983249945617,
|
153 |
+
"grad_norm": 32.36734390258789,
|
154 |
+
"learning_rate": 1.1931694583423973e-05,
|
155 |
+
"loss": 0.453,
|
156 |
+
"step": 10500
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 2.3928649118990646,
|
160 |
+
"grad_norm": 19.55815315246582,
|
161 |
+
"learning_rate": 1.011891813501559e-05,
|
162 |
+
"loss": 0.4465,
|
163 |
+
"step": 11000
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 2.5016314988035675,
|
167 |
+
"grad_norm": 16.438173294067383,
|
168 |
+
"learning_rate": 8.306141686607208e-06,
|
169 |
+
"loss": 0.4226,
|
170 |
+
"step": 11500
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 2.6103980857080704,
|
174 |
+
"grad_norm": 21.047183990478516,
|
175 |
+
"learning_rate": 6.493365238198826e-06,
|
176 |
+
"loss": 0.4324,
|
177 |
+
"step": 12000
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 2.7191646726125733,
|
181 |
+
"grad_norm": 29.30052947998047,
|
182 |
+
"learning_rate": 4.680588789790443e-06,
|
183 |
+
"loss": 0.4306,
|
184 |
+
"step": 12500
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 2.8279312595170762,
|
188 |
+
"grad_norm": 7.3705010414123535,
|
189 |
+
"learning_rate": 2.8678123413820606e-06,
|
190 |
+
"loss": 0.4371,
|
191 |
+
"step": 13000
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 2.936697846421579,
|
195 |
+
"grad_norm": 24.24944305419922,
|
196 |
+
"learning_rate": 1.0550358929736786e-06,
|
197 |
+
"loss": 0.4305,
|
198 |
+
"step": 13500
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 3.0,
|
202 |
+
"step": 13791,
|
203 |
+
"total_flos": 2.508085260375571e+16,
|
204 |
+
"train_loss": 0.7300247143699852,
|
205 |
+
"train_runtime": 1073.0221,
|
206 |
+
"train_samples_per_second": 205.623,
|
207 |
+
"train_steps_per_second": 12.852
|
208 |
+
}
|
209 |
+
],
|
210 |
+
"logging_steps": 500,
|
211 |
+
"max_steps": 13791,
|
212 |
+
"num_input_tokens_seen": 0,
|
213 |
+
"num_train_epochs": 3,
|
214 |
+
"save_steps": 500,
|
215 |
+
"stateful_callbacks": {
|
216 |
+
"TrainerControl": {
|
217 |
+
"args": {
|
218 |
+
"should_epoch_stop": false,
|
219 |
+
"should_evaluate": false,
|
220 |
+
"should_log": false,
|
221 |
+
"should_save": true,
|
222 |
+
"should_training_stop": true
|
223 |
+
},
|
224 |
+
"attributes": {}
|
225 |
+
}
|
226 |
+
},
|
227 |
+
"total_flos": 2.508085260375571e+16,
|
228 |
+
"train_batch_size": 16,
|
229 |
+
"trial_name": null,
|
230 |
+
"trial_params": null
|
231 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83eb56997ccc18225206b4b840525474985d7de9254a3d04681d437858b94051
|
3 |
+
size 5304
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|