real-jiakai commited on
Commit
3384522
1 Parent(s): 2dd5445

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ eval_nbest_predictions.json filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ checkpoint-*/
2
+ .ipynb_checkpoints
README.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: bert-base-chinese
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - real-jiakai/chinese-squadv2
8
+ model-index:
9
+ - name: chinese_squadv2
10
+ results: []
11
+ ---
12
+
13
+ # bert-base-chinese-finetuned-squadv2
14
+
15
+ This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the [Chinese SQuAD v2.0 dataset](https://huggingface.co/datasets/real-jiakai/chinese-squadv2).
16
+
17
+ ## Model Description
18
+
19
+ This model is designed for Chinese question answering tasks, specifically for extractive QA where the answer must be extracted from a given context paragraph. It can handle both answerable and unanswerable questions, following the SQuAD v2.0 format.
20
+
21
+ Key features:
22
+ - Based on BERT-base Chinese architecture
23
+ - Supports both answerable and unanswerable questions
24
+ - Trained on Chinese question-answer pairs
25
+ - Optimized for extractive question answering
26
+
27
+ ## Intended Uses & Limitations
28
+
29
+ ### Intended Uses
30
+ - Chinese extractive question answering
31
+ - Reading comprehension tasks
32
+ - Information extraction from Chinese text
33
+ - Automated question answering systems
34
+
35
+ ### Limitations
36
+ - Performance is significantly better on unanswerable questions (76.65% accuracy) compared to answerable questions (36.41% accuracy)
37
+ - Limited to extractive QA (cannot generate new answers)
38
+ - May not perform well on domain-specific questions outside the training data
39
+ - Designed for modern Chinese text, may not work well with classical Chinese or dialectal variations
40
+
41
+ ## Training and Evaluation Data
42
+
43
+ The model was trained on the Chinese SQuAD v2.0 dataset, which contains:
44
+
45
+ Training Set:
46
+ - Total examples: 90,027
47
+ - Answerable questions: 46,529
48
+ - Unanswerable questions: 43,498
49
+
50
+ Validation Set:
51
+ - Total examples: 9,936
52
+ - Answerable questions: 3,991
53
+ - Unanswerable questions: 5,945
54
+
55
+ ## Training Procedure
56
+
57
+ ### Training Hyperparameters
58
+
59
+ - Learning rate: 3e-05
60
+ - Batch size: 12
61
+ - Evaluation batch size: 8
62
+ - Number of epochs: 5
63
+ - Optimizer: AdamW (β1=0.9, β2=0.999, ε=1e-08)
64
+ - Learning rate scheduler: Linear
65
+ - Maximum sequence length: 384
66
+ - Document stride: 128
67
+ - Training device: CUDA-enabled GPU
68
+
69
+ ### Training Results
70
+
71
+ Final evaluation metrics:
72
+ - Overall Exact Match: 60.49%
73
+ - Overall F1 Score: 60.54%
74
+ - Answerable Questions:
75
+ - Exact Match: 36.41%
76
+ - F1 Score: 36.53%
77
+ - Unanswerable Questions:
78
+ - Exact Match: 76.65%
79
+ - F1 Score: 76.65%
80
+
81
+ ### Framework Versions
82
+ - Transformers: 4.47.0.dev0
83
+ - PyTorch: 2.5.1+cu124
84
+ - Datasets: 3.1.0
85
+ - Tokenizers: 0.20.3
86
+
87
+ ## Usage
88
+
89
+ ```python
90
+ from transformers import AutoModelForQuestionAnswering, AutoTokenizer
91
+ import torch
92
+
93
+ # Load model and tokenizer
94
+ model_name = "real-jiakai/bert-base-chinese-finetuned-squadv2"
95
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
96
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
97
+
98
+ # Prepare the inputs
99
+ question = "your_question"
100
+ context = "your_context"
101
+ inputs = tokenizer(
102
+ question,
103
+ context,
104
+ add_special_tokens=True,
105
+ return_tensors="pt"
106
+ )
107
+
108
+ # Get the answer
109
+ start_scores, end_scores = model(**inputs)
110
+ start_index = torch.argmax(start_scores)
111
+ end_index = torch.argmax(end_scores)
112
+ answer = tokenizer.convert_tokens_to_string(
113
+ tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][start_index:end_index+1])
114
+ )
115
+ ```
116
+
117
+ ## Limitations and Bias
118
+
119
+ The model shows significant performance disparity between answerable and unanswerable questions, which might indicate:
120
+ 1. Dataset quality issues
121
+ 2. Potential translation artifacts in the Chinese version of SQuAD
122
+ 3. Imbalanced handling of answerable vs. unanswerable questions
123
+
124
+ ## Ethics & Responsible AI
125
+
126
+ Users should be aware that:
127
+ - The model may reflect biases present in the training data
128
+ - Performance varies significantly based on question type
129
+ - Results should be validated for critical applications
130
+ - The model should not be used as the sole decision-maker in critical systems
131
+
132
+ ### Framework versions
133
+
134
+ - Transformers 4.47.0.dev0
135
+ - Pytorch 2.5.1+cu124
136
+ - Datasets 3.1.0
137
+ - Tokenizers 0.20.3
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_HasAns_exact": 36.40691556001002,
4
+ "eval_HasAns_f1": 36.53303265681116,
5
+ "eval_HasAns_total": 3991,
6
+ "eval_NoAns_exact": 76.65264928511354,
7
+ "eval_NoAns_f1": 76.65264928511354,
8
+ "eval_NoAns_total": 5945,
9
+ "eval_best_exact": 60.829307568438004,
10
+ "eval_best_exact_thresh": 0.0,
11
+ "eval_best_f1": 60.87996511003758,
12
+ "eval_best_f1_thresh": 0.0,
13
+ "eval_exact": 60.487117552334944,
14
+ "eval_f1": 60.53777509393452,
15
+ "eval_runtime": 37.7571,
16
+ "eval_samples": 10637,
17
+ "eval_samples_per_second": 281.722,
18
+ "eval_steps_per_second": 35.225,
19
+ "eval_total": 9936,
20
+ "total_flos": 9.414718117765632e+16,
21
+ "train_loss": 0.0,
22
+ "train_runtime": 0.003,
23
+ "train_samples": 96082,
24
+ "train_samples_per_second": 159489123.369,
25
+ "train_steps_per_second": 13291036.935
26
+ }
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-chinese",
3
+ "architectures": [
4
+ "BertForQuestionAnswering"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.47.0.dev0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 21128
31
+ }
eval_nbest_predictions.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:010e819a99f25563cb3e21f8d7edfadd99f156cc74f5c8ef8a171498f2e99ce8
3
+ size 48586682
eval_null_odds.json ADDED
The diff for this file is too large to render. See raw diff
 
eval_predictions.json ADDED
The diff for this file is too large to render. See raw diff
 
eval_results.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_HasAns_exact": 36.40691556001002,
4
+ "eval_HasAns_f1": 36.53303265681116,
5
+ "eval_HasAns_total": 3991,
6
+ "eval_NoAns_exact": 76.65264928511354,
7
+ "eval_NoAns_f1": 76.65264928511354,
8
+ "eval_NoAns_total": 5945,
9
+ "eval_best_exact": 60.829307568438004,
10
+ "eval_best_exact_thresh": 0.0,
11
+ "eval_best_f1": 60.87996511003758,
12
+ "eval_best_f1_thresh": 0.0,
13
+ "eval_exact": 60.487117552334944,
14
+ "eval_f1": 60.53777509393452,
15
+ "eval_runtime": 37.7571,
16
+ "eval_samples": 10637,
17
+ "eval_samples_per_second": 281.722,
18
+ "eval_steps_per_second": 35.225,
19
+ "eval_total": 9936
20
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7828898b0efe20f1392c8ac7d18495b19608784f825cc59a3c39dabfe397afd
3
+ size 406737680
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "total_flos": 9.414718117765632e+16,
4
+ "train_loss": 0.0,
5
+ "train_runtime": 0.003,
6
+ "train_samples": 96082,
7
+ "train_samples_per_second": 159489123.369,
8
+ "train_steps_per_second": 13291036.935
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,602 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 5.0,
5
+ "eval_steps": 500,
6
+ "global_step": 40035,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.062445360309728984,
13
+ "grad_norm": 14.40565299987793,
14
+ "learning_rate": 2.9625327838141625e-05,
15
+ "loss": 1.9858,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.12489072061945797,
20
+ "grad_norm": 19.097322463989258,
21
+ "learning_rate": 2.9250655676283253e-05,
22
+ "loss": 1.5149,
23
+ "step": 1000
24
+ },
25
+ {
26
+ "epoch": 0.18733608092918697,
27
+ "grad_norm": 15.344030380249023,
28
+ "learning_rate": 2.887598351442488e-05,
29
+ "loss": 1.4258,
30
+ "step": 1500
31
+ },
32
+ {
33
+ "epoch": 0.24978144123891594,
34
+ "grad_norm": 22.120119094848633,
35
+ "learning_rate": 2.8501311352566505e-05,
36
+ "loss": 1.3884,
37
+ "step": 2000
38
+ },
39
+ {
40
+ "epoch": 0.31222680154864496,
41
+ "grad_norm": 15.072545051574707,
42
+ "learning_rate": 2.812663919070813e-05,
43
+ "loss": 1.3306,
44
+ "step": 2500
45
+ },
46
+ {
47
+ "epoch": 0.37467216185837393,
48
+ "grad_norm": 15.24660587310791,
49
+ "learning_rate": 2.7751967028849757e-05,
50
+ "loss": 1.2959,
51
+ "step": 3000
52
+ },
53
+ {
54
+ "epoch": 0.4371175221681029,
55
+ "grad_norm": 13.45875072479248,
56
+ "learning_rate": 2.7377294866991385e-05,
57
+ "loss": 1.2756,
58
+ "step": 3500
59
+ },
60
+ {
61
+ "epoch": 0.49956288247783187,
62
+ "grad_norm": 12.797966003417969,
63
+ "learning_rate": 2.700262270513301e-05,
64
+ "loss": 1.2815,
65
+ "step": 4000
66
+ },
67
+ {
68
+ "epoch": 0.5620082427875609,
69
+ "grad_norm": 21.160541534423828,
70
+ "learning_rate": 2.6627950543274633e-05,
71
+ "loss": 1.2025,
72
+ "step": 4500
73
+ },
74
+ {
75
+ "epoch": 0.6244536030972899,
76
+ "grad_norm": 13.691265106201172,
77
+ "learning_rate": 2.625327838141626e-05,
78
+ "loss": 1.1658,
79
+ "step": 5000
80
+ },
81
+ {
82
+ "epoch": 0.6868989634070188,
83
+ "grad_norm": 21.028295516967773,
84
+ "learning_rate": 2.587860621955789e-05,
85
+ "loss": 1.1849,
86
+ "step": 5500
87
+ },
88
+ {
89
+ "epoch": 0.7493443237167479,
90
+ "grad_norm": 15.639451026916504,
91
+ "learning_rate": 2.5503934057699513e-05,
92
+ "loss": 1.154,
93
+ "step": 6000
94
+ },
95
+ {
96
+ "epoch": 0.8117896840264769,
97
+ "grad_norm": 15.77192497253418,
98
+ "learning_rate": 2.5129261895841137e-05,
99
+ "loss": 1.1657,
100
+ "step": 6500
101
+ },
102
+ {
103
+ "epoch": 0.8742350443362058,
104
+ "grad_norm": 19.546422958374023,
105
+ "learning_rate": 2.4754589733982765e-05,
106
+ "loss": 1.1329,
107
+ "step": 7000
108
+ },
109
+ {
110
+ "epoch": 0.9366804046459348,
111
+ "grad_norm": 11.490877151489258,
112
+ "learning_rate": 2.4379917572124393e-05,
113
+ "loss": 1.1304,
114
+ "step": 7500
115
+ },
116
+ {
117
+ "epoch": 0.9991257649556637,
118
+ "grad_norm": 13.906126022338867,
119
+ "learning_rate": 2.4005245410266017e-05,
120
+ "loss": 1.0877,
121
+ "step": 8000
122
+ },
123
+ {
124
+ "epoch": 1.0615711252653928,
125
+ "grad_norm": 22.66297721862793,
126
+ "learning_rate": 2.3630573248407645e-05,
127
+ "loss": 0.8364,
128
+ "step": 8500
129
+ },
130
+ {
131
+ "epoch": 1.1240164855751218,
132
+ "grad_norm": 21.926162719726562,
133
+ "learning_rate": 2.325590108654927e-05,
134
+ "loss": 0.8493,
135
+ "step": 9000
136
+ },
137
+ {
138
+ "epoch": 1.1864618458848508,
139
+ "grad_norm": 21.4632625579834,
140
+ "learning_rate": 2.2881228924690897e-05,
141
+ "loss": 0.8424,
142
+ "step": 9500
143
+ },
144
+ {
145
+ "epoch": 1.2489072061945796,
146
+ "grad_norm": 19.286104202270508,
147
+ "learning_rate": 2.250655676283252e-05,
148
+ "loss": 0.856,
149
+ "step": 10000
150
+ },
151
+ {
152
+ "epoch": 1.3113525665043086,
153
+ "grad_norm": 35.93063735961914,
154
+ "learning_rate": 2.213188460097415e-05,
155
+ "loss": 0.8289,
156
+ "step": 10500
157
+ },
158
+ {
159
+ "epoch": 1.3737979268140377,
160
+ "grad_norm": 24.366748809814453,
161
+ "learning_rate": 2.1757212439115773e-05,
162
+ "loss": 0.868,
163
+ "step": 11000
164
+ },
165
+ {
166
+ "epoch": 1.4362432871237667,
167
+ "grad_norm": 22.02488136291504,
168
+ "learning_rate": 2.13825402772574e-05,
169
+ "loss": 0.841,
170
+ "step": 11500
171
+ },
172
+ {
173
+ "epoch": 1.4986886474334957,
174
+ "grad_norm": 54.16468811035156,
175
+ "learning_rate": 2.1007868115399025e-05,
176
+ "loss": 0.8262,
177
+ "step": 12000
178
+ },
179
+ {
180
+ "epoch": 1.5611340077432247,
181
+ "grad_norm": 27.68937873840332,
182
+ "learning_rate": 2.0633195953540653e-05,
183
+ "loss": 0.8225,
184
+ "step": 12500
185
+ },
186
+ {
187
+ "epoch": 1.6235793680529538,
188
+ "grad_norm": 19.883024215698242,
189
+ "learning_rate": 2.0258523791682277e-05,
190
+ "loss": 0.8412,
191
+ "step": 13000
192
+ },
193
+ {
194
+ "epoch": 1.6860247283626828,
195
+ "grad_norm": 25.48287010192871,
196
+ "learning_rate": 1.9883851629823905e-05,
197
+ "loss": 0.8559,
198
+ "step": 13500
199
+ },
200
+ {
201
+ "epoch": 1.7484700886724116,
202
+ "grad_norm": 25.736173629760742,
203
+ "learning_rate": 1.9509179467965533e-05,
204
+ "loss": 0.798,
205
+ "step": 14000
206
+ },
207
+ {
208
+ "epoch": 1.8109154489821406,
209
+ "grad_norm": 15.345009803771973,
210
+ "learning_rate": 1.9134507306107157e-05,
211
+ "loss": 0.8568,
212
+ "step": 14500
213
+ },
214
+ {
215
+ "epoch": 1.8733608092918697,
216
+ "grad_norm": 13.86083698272705,
217
+ "learning_rate": 1.875983514424878e-05,
218
+ "loss": 0.8144,
219
+ "step": 15000
220
+ },
221
+ {
222
+ "epoch": 1.9358061696015985,
223
+ "grad_norm": 21.71160316467285,
224
+ "learning_rate": 1.838516298239041e-05,
225
+ "loss": 0.8484,
226
+ "step": 15500
227
+ },
228
+ {
229
+ "epoch": 1.9982515299113275,
230
+ "grad_norm": 13.77094841003418,
231
+ "learning_rate": 1.8010490820532037e-05,
232
+ "loss": 0.8502,
233
+ "step": 16000
234
+ },
235
+ {
236
+ "epoch": 2.0606968902210565,
237
+ "grad_norm": 21.91532325744629,
238
+ "learning_rate": 1.763581865867366e-05,
239
+ "loss": 0.5608,
240
+ "step": 16500
241
+ },
242
+ {
243
+ "epoch": 2.1231422505307855,
244
+ "grad_norm": 19.61579704284668,
245
+ "learning_rate": 1.7261146496815285e-05,
246
+ "loss": 0.5345,
247
+ "step": 17000
248
+ },
249
+ {
250
+ "epoch": 2.1855876108405146,
251
+ "grad_norm": 17.571279525756836,
252
+ "learning_rate": 1.6886474334956913e-05,
253
+ "loss": 0.5251,
254
+ "step": 17500
255
+ },
256
+ {
257
+ "epoch": 2.2480329711502436,
258
+ "grad_norm": 45.33535385131836,
259
+ "learning_rate": 1.651180217309854e-05,
260
+ "loss": 0.565,
261
+ "step": 18000
262
+ },
263
+ {
264
+ "epoch": 2.3104783314599726,
265
+ "grad_norm": 15.158855438232422,
266
+ "learning_rate": 1.6137130011240165e-05,
267
+ "loss": 0.5472,
268
+ "step": 18500
269
+ },
270
+ {
271
+ "epoch": 2.3729236917697016,
272
+ "grad_norm": 17.102876663208008,
273
+ "learning_rate": 1.576245784938179e-05,
274
+ "loss": 0.5638,
275
+ "step": 19000
276
+ },
277
+ {
278
+ "epoch": 2.4353690520794307,
279
+ "grad_norm": 34.022037506103516,
280
+ "learning_rate": 1.5387785687523417e-05,
281
+ "loss": 0.5259,
282
+ "step": 19500
283
+ },
284
+ {
285
+ "epoch": 2.4978144123891592,
286
+ "grad_norm": 20.363927841186523,
287
+ "learning_rate": 1.5013113525665045e-05,
288
+ "loss": 0.5672,
289
+ "step": 20000
290
+ },
291
+ {
292
+ "epoch": 2.5602597726988883,
293
+ "grad_norm": 26.551931381225586,
294
+ "learning_rate": 1.4638441363806669e-05,
295
+ "loss": 0.5642,
296
+ "step": 20500
297
+ },
298
+ {
299
+ "epoch": 2.6227051330086173,
300
+ "grad_norm": 37.67859649658203,
301
+ "learning_rate": 1.4263769201948297e-05,
302
+ "loss": 0.5836,
303
+ "step": 21000
304
+ },
305
+ {
306
+ "epoch": 2.6851504933183463,
307
+ "grad_norm": 23.416738510131836,
308
+ "learning_rate": 1.3889097040089921e-05,
309
+ "loss": 0.5932,
310
+ "step": 21500
311
+ },
312
+ {
313
+ "epoch": 2.7475958536280753,
314
+ "grad_norm": 37.503047943115234,
315
+ "learning_rate": 1.3514424878231549e-05,
316
+ "loss": 0.5601,
317
+ "step": 22000
318
+ },
319
+ {
320
+ "epoch": 2.8100412139378044,
321
+ "grad_norm": 26.307445526123047,
322
+ "learning_rate": 1.3139752716373173e-05,
323
+ "loss": 0.5784,
324
+ "step": 22500
325
+ },
326
+ {
327
+ "epoch": 2.8724865742475334,
328
+ "grad_norm": 15.568779945373535,
329
+ "learning_rate": 1.27650805545148e-05,
330
+ "loss": 0.5613,
331
+ "step": 23000
332
+ },
333
+ {
334
+ "epoch": 2.9349319345572624,
335
+ "grad_norm": 19.449880599975586,
336
+ "learning_rate": 1.2390408392656425e-05,
337
+ "loss": 0.5597,
338
+ "step": 23500
339
+ },
340
+ {
341
+ "epoch": 2.9973772948669914,
342
+ "grad_norm": 22.43405532836914,
343
+ "learning_rate": 1.2015736230798053e-05,
344
+ "loss": 0.5637,
345
+ "step": 24000
346
+ },
347
+ {
348
+ "epoch": 3.0598226551767205,
349
+ "grad_norm": 45.42557907104492,
350
+ "learning_rate": 1.1641064068939677e-05,
351
+ "loss": 0.3605,
352
+ "step": 24500
353
+ },
354
+ {
355
+ "epoch": 3.1222680154864495,
356
+ "grad_norm": 51.729000091552734,
357
+ "learning_rate": 1.1266391907081305e-05,
358
+ "loss": 0.3556,
359
+ "step": 25000
360
+ },
361
+ {
362
+ "epoch": 3.1847133757961785,
363
+ "grad_norm": 11.632122993469238,
364
+ "learning_rate": 1.0891719745222929e-05,
365
+ "loss": 0.3751,
366
+ "step": 25500
367
+ },
368
+ {
369
+ "epoch": 3.2471587361059076,
370
+ "grad_norm": 6.7493743896484375,
371
+ "learning_rate": 1.0517047583364557e-05,
372
+ "loss": 0.3554,
373
+ "step": 26000
374
+ },
375
+ {
376
+ "epoch": 3.309604096415636,
377
+ "grad_norm": 9.528502464294434,
378
+ "learning_rate": 1.0142375421506183e-05,
379
+ "loss": 0.3463,
380
+ "step": 26500
381
+ },
382
+ {
383
+ "epoch": 3.372049456725365,
384
+ "grad_norm": 28.454116821289062,
385
+ "learning_rate": 9.767703259647809e-06,
386
+ "loss": 0.3823,
387
+ "step": 27000
388
+ },
389
+ {
390
+ "epoch": 3.434494817035094,
391
+ "grad_norm": 28.30170440673828,
392
+ "learning_rate": 9.393031097789435e-06,
393
+ "loss": 0.3529,
394
+ "step": 27500
395
+ },
396
+ {
397
+ "epoch": 3.496940177344823,
398
+ "grad_norm": 14.024445533752441,
399
+ "learning_rate": 9.018358935931061e-06,
400
+ "loss": 0.3774,
401
+ "step": 28000
402
+ },
403
+ {
404
+ "epoch": 3.5593855376545522,
405
+ "grad_norm": 9.80344295501709,
406
+ "learning_rate": 8.643686774072687e-06,
407
+ "loss": 0.3471,
408
+ "step": 28500
409
+ },
410
+ {
411
+ "epoch": 3.6218308979642813,
412
+ "grad_norm": 18.51318359375,
413
+ "learning_rate": 8.269014612214313e-06,
414
+ "loss": 0.3514,
415
+ "step": 29000
416
+ },
417
+ {
418
+ "epoch": 3.6842762582740103,
419
+ "grad_norm": 23.305683135986328,
420
+ "learning_rate": 7.894342450355939e-06,
421
+ "loss": 0.3539,
422
+ "step": 29500
423
+ },
424
+ {
425
+ "epoch": 3.7467216185837393,
426
+ "grad_norm": 31.820262908935547,
427
+ "learning_rate": 7.519670288497564e-06,
428
+ "loss": 0.3364,
429
+ "step": 30000
430
+ },
431
+ {
432
+ "epoch": 3.8091669788934683,
433
+ "grad_norm": 28.33430290222168,
434
+ "learning_rate": 7.144998126639191e-06,
435
+ "loss": 0.3607,
436
+ "step": 30500
437
+ },
438
+ {
439
+ "epoch": 3.8716123392031974,
440
+ "grad_norm": 30.772987365722656,
441
+ "learning_rate": 6.770325964780817e-06,
442
+ "loss": 0.3314,
443
+ "step": 31000
444
+ },
445
+ {
446
+ "epoch": 3.934057699512926,
447
+ "grad_norm": 16.197298049926758,
448
+ "learning_rate": 6.395653802922443e-06,
449
+ "loss": 0.3449,
450
+ "step": 31500
451
+ },
452
+ {
453
+ "epoch": 3.996503059822655,
454
+ "grad_norm": 46.485103607177734,
455
+ "learning_rate": 6.020981641064069e-06,
456
+ "loss": 0.3263,
457
+ "step": 32000
458
+ },
459
+ {
460
+ "epoch": 4.058948420132384,
461
+ "grad_norm": 51.467411041259766,
462
+ "learning_rate": 5.646309479205695e-06,
463
+ "loss": 0.2165,
464
+ "step": 32500
465
+ },
466
+ {
467
+ "epoch": 4.121393780442113,
468
+ "grad_norm": 3.3639559745788574,
469
+ "learning_rate": 5.271637317347321e-06,
470
+ "loss": 0.2134,
471
+ "step": 33000
472
+ },
473
+ {
474
+ "epoch": 4.183839140751842,
475
+ "grad_norm": 20.382158279418945,
476
+ "learning_rate": 4.896965155488947e-06,
477
+ "loss": 0.229,
478
+ "step": 33500
479
+ },
480
+ {
481
+ "epoch": 4.246284501061571,
482
+ "grad_norm": 22.384031295776367,
483
+ "learning_rate": 4.522292993630573e-06,
484
+ "loss": 0.2255,
485
+ "step": 34000
486
+ },
487
+ {
488
+ "epoch": 4.3087298613713,
489
+ "grad_norm": 2.972531318664551,
490
+ "learning_rate": 4.147620831772199e-06,
491
+ "loss": 0.2167,
492
+ "step": 34500
493
+ },
494
+ {
495
+ "epoch": 4.371175221681029,
496
+ "grad_norm": 19.604764938354492,
497
+ "learning_rate": 3.772948669913825e-06,
498
+ "loss": 0.2192,
499
+ "step": 35000
500
+ },
501
+ {
502
+ "epoch": 4.433620581990758,
503
+ "grad_norm": 16.23500633239746,
504
+ "learning_rate": 3.3982765080554515e-06,
505
+ "loss": 0.2242,
506
+ "step": 35500
507
+ },
508
+ {
509
+ "epoch": 4.496065942300487,
510
+ "grad_norm": 8.235413551330566,
511
+ "learning_rate": 3.0236043461970775e-06,
512
+ "loss": 0.2196,
513
+ "step": 36000
514
+ },
515
+ {
516
+ "epoch": 4.558511302610216,
517
+ "grad_norm": 22.458770751953125,
518
+ "learning_rate": 2.6489321843387035e-06,
519
+ "loss": 0.2244,
520
+ "step": 36500
521
+ },
522
+ {
523
+ "epoch": 4.620956662919945,
524
+ "grad_norm": 39.24953842163086,
525
+ "learning_rate": 2.2742600224803295e-06,
526
+ "loss": 0.2076,
527
+ "step": 37000
528
+ },
529
+ {
530
+ "epoch": 4.683402023229674,
531
+ "grad_norm": 10.973857879638672,
532
+ "learning_rate": 1.8995878606219555e-06,
533
+ "loss": 0.2288,
534
+ "step": 37500
535
+ },
536
+ {
537
+ "epoch": 4.745847383539403,
538
+ "grad_norm": 11.058865547180176,
539
+ "learning_rate": 1.5249156987635818e-06,
540
+ "loss": 0.214,
541
+ "step": 38000
542
+ },
543
+ {
544
+ "epoch": 4.808292743849132,
545
+ "grad_norm": 47.875057220458984,
546
+ "learning_rate": 1.150243536905208e-06,
547
+ "loss": 0.2237,
548
+ "step": 38500
549
+ },
550
+ {
551
+ "epoch": 4.870738104158861,
552
+ "grad_norm": 55.14733123779297,
553
+ "learning_rate": 7.755713750468341e-07,
554
+ "loss": 0.2228,
555
+ "step": 39000
556
+ },
557
+ {
558
+ "epoch": 4.93318346446859,
559
+ "grad_norm": 3.3354523181915283,
560
+ "learning_rate": 4.008992131884601e-07,
561
+ "loss": 0.2024,
562
+ "step": 39500
563
+ },
564
+ {
565
+ "epoch": 4.9956288247783185,
566
+ "grad_norm": 62.27578353881836,
567
+ "learning_rate": 2.6227051330086176e-08,
568
+ "loss": 0.2024,
569
+ "step": 40000
570
+ },
571
+ {
572
+ "epoch": 5.0,
573
+ "step": 40035,
574
+ "total_flos": 9.414718117765632e+16,
575
+ "train_loss": 0.0,
576
+ "train_runtime": 0.003,
577
+ "train_samples_per_second": 159489123.369,
578
+ "train_steps_per_second": 13291036.935
579
+ }
580
+ ],
581
+ "logging_steps": 500,
582
+ "max_steps": 40035,
583
+ "num_input_tokens_seen": 0,
584
+ "num_train_epochs": 5,
585
+ "save_steps": 500,
586
+ "stateful_callbacks": {
587
+ "TrainerControl": {
588
+ "args": {
589
+ "should_epoch_stop": false,
590
+ "should_evaluate": false,
591
+ "should_log": false,
592
+ "should_save": true,
593
+ "should_training_stop": true
594
+ },
595
+ "attributes": {}
596
+ }
597
+ },
598
+ "total_flos": 9.414718117765632e+16,
599
+ "train_batch_size": 12,
600
+ "trial_name": null,
601
+ "trial_params": null
602
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5c76567ecb5d2c537b2195c3209a227b730343ece8b2e78d7d497310ab2e666
3
+ size 5368
vocab.txt ADDED
The diff for this file is too large to render. See raw diff