Upload PPO LunarLander-v2 trained agent
Browse files- README.md +21 -45
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -1,61 +1,37 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- LunarLander-v2
|
4 |
-
- ppo
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
-
-
|
8 |
-
- deep-rl-class
|
9 |
model-index:
|
10 |
- name: PPO
|
11 |
results:
|
12 |
-
-
|
13 |
-
- type: mean_reward
|
14 |
-
value: -138.27 +/- 96.26
|
15 |
-
name: mean_reward
|
16 |
-
task:
|
17 |
type: reinforcement-learning
|
18 |
name: reinforcement-learning
|
19 |
dataset:
|
20 |
name: LunarLander-v2
|
21 |
type: LunarLander-v2
|
|
|
|
|
|
|
|
|
|
|
22 |
---
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
# Hyperparameters
|
30 |
-
```python
|
31 |
-
{'exp_name': 'ppo'
|
32 |
-
'seed': 1
|
33 |
-
'torch_deterministic': True
|
34 |
-
'cuda': True
|
35 |
-
'track': False
|
36 |
-
'wandb_project_name': 'cleanRL'
|
37 |
-
'wandb_entity': None
|
38 |
-
'capture_video': False
|
39 |
-
'env_id': 'LunarLander-v2'
|
40 |
-
'total_timesteps': 50000
|
41 |
-
'learning_rate': 0.00025
|
42 |
-
'num_envs': 4
|
43 |
-
'num_steps': 128
|
44 |
-
'anneal_lr': True
|
45 |
-
'gae': True
|
46 |
-
'gamma': 0.99
|
47 |
-
'gae_lambda': 0.95
|
48 |
-
'num_minibatches': 4
|
49 |
-
'update_epochs': 4
|
50 |
-
'norm_adv': True
|
51 |
-
'clip_coef': 0.2
|
52 |
-
'clip_vloss': True
|
53 |
-
'ent_coef': 0.01
|
54 |
-
'vf_coef': 0.5
|
55 |
-
'max_grad_norm': 0.5
|
56 |
-
'target_kl': None
|
57 |
-
'repo_id': 'reachrkr/ppo-LunarLander-v2'
|
58 |
-
'batch_size': 512
|
59 |
-
'minibatch_size': 128}
|
60 |
-
```
|
61 |
-
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
tags:
|
4 |
- LunarLander-v2
|
|
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
11 |
+
- task:
|
|
|
|
|
|
|
|
|
12 |
type: reinforcement-learning
|
13 |
name: reinforcement-learning
|
14 |
dataset:
|
15 |
name: LunarLander-v2
|
16 |
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 266.55 +/- 20.62
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
|
36 |
+
...
|
37 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f207b8a8670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f207b8a8700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f207b8a8790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f207b8a8820>", "_build": "<function ActorCriticPolicy._build at 0x7f207b8a88b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f207b8a8940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f207b8a89d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f207b8a8a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f207b8a8af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f207b8a8b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f207b8a8c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f207b8a8ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f207b8a1840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674000948523485330, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJp1Xr3DoWm6oKf/t/OmZLOdMo+453YTNwAAgD8AAIA/AGzWu0i3nLqq+oW4z/6LNQYCibqaO/y0AACAPwAAgD9mvwK9rlWjusWM37eJv4GyjTiNuoi//jYAAIA/AACAPw1auT0nFWo+EgpZvr0Kbb6atZ29dp6MvQAAAAAAAAAATZ0DPRSYnLo6O+C6PVQItuYO1DrqZQE6AACAPwAAgD+aC0e9w/1tuoaK2Drm45Q0bcElu5Ar+rkAAIA/AACAP01fGj2P8k26NdzrM9SIJzAqHBS7OFKuswAAgD8AAIA/mrQ4vUgDtLotEEe8q9WLPEvkDTq1VXO9AACAPwAAgD9AFYe9SHmJumN1aboJKPy1kcoiu157hTkAAIA/AACAP80Ps7wbu7c/WdU5v9M9rD5F9KI86uy/PQAAAAAAAAAAMwwtvcMZMbpyguq66zcjtUKNj7pyOgk6AACAPwAAgD/NbIA9w9ViurULDDxXbzo1PmpvO2EjLDQAAIA/AACAPxrJE71I4d64bHySOaLVNDWJ1gk8+R+vuAAAgD8AAIA/minYPJS8lTslGw09ppa5vSjMAz2+TPk8AAAAAAAAAABmJ+88XPttuqLLejoA0CE2kRDKupctk7kAAIA/AACAP2amizvvZrM/AjRXPid6Yb4M4E67vulVvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImZ1F71SOY0CUhpRSlIwBbJRN6AOMAXSUR0CQUd81n/T9dX2UKGgGaAloD0MIpn1zf/X7X0CUhpRSlGgVTegDaBZHQJBR7yTY/V11fZQoaAZoCWgPQwh5ymq6noRoQJSGlFKUaBVN6ANoFkdAkFKJmAbyY3V9lChoBmgJaA9DCDwyVpt/ZGRAlIaUUpRoFU3oA2gWR0CQU2bZOBUadX2UKGgGaAloD0MIQZqxaLpxZkCUhpRSlGgVTegDaBZHQJBTyxt52Qp1fZQoaAZoCWgPQwgmOsssQgtvQJSGlFKUaBVNxQJoFkdAkFdiDVYp2HV9lChoBmgJaA9DCKopyTqcsXBAlIaUUpRoFU22AmgWR0CQcXPpY9xIdX2UKGgGaAloD0MI3Qw34HOEZECUhpRSlGgVTegDaBZHQJB0d4W1twd1fZQoaAZoCWgPQwgFU82spZRkQJSGlFKUaBVN6ANoFkdAkHc2D6Fds3V9lChoBmgJaA9DCNRIS+XtyGNAlIaUUpRoFU3oA2gWR0CQhfV32VVxdX2UKGgGaAloD0MIpp2ayw21Y0CUhpRSlGgVTegDaBZHQJCGmqR2bG51fZQoaAZoCWgPQwhNE7afDANlQJSGlFKUaBVN6ANoFkdAkIbNxVAAyXV9lChoBmgJaA9DCBCSBUxgEGlAlIaUUpRoFU3oA2gWR0CQiUCSzPa+dX2UKGgGaAloD0MIBdzz/GkrY0CUhpRSlGgVTegDaBZHQJCLjCAMDwJ1fZQoaAZoCWgPQwjXTL7ZZr1kQJSGlFKUaBVN6ANoFkdAkI9M76pHZ3V9lChoBmgJaA9DCC7kEdzI/mFAlIaUUpRoFU3oA2gWR0CQl6m6GxlhdX2UKGgGaAloD0MIaAdcV0zxZUCUhpRSlGgVTegDaBZHQJCZWilBQep1fZQoaAZoCWgPQwiIad/c35RlQJSGlFKUaBVN6ANoFkdAkJlpV0cOsnV9lChoBmgJaA9DCOY+OQqQ+mBAlIaUUpRoFU3oA2gWR0CQmgt3fQ8fdX2UKGgGaAloD0MIhWBVvTyickCUhpRSlGgVTUkBaBZHQJCaGxoqTbF1fZQoaAZoCWgPQwiq1VdXhTNlQJSGlFKUaBVN6ANoFkdAkJrUIgNgB3V9lChoBmgJaA9DCIy7QbRWQV1AlIaUUpRoFU3oA2gWR0CQmzO5J9RadX2UKGgGaAloD0MInu3RG27ZaECUhpRSlGgVTegDaBZHQJCeoIQe3hJ1fZQoaAZoCWgPQwg8TzxnCytiQJSGlFKUaBVN6ANoFkdAkKVa0IC2dHV9lChoBmgJaA9DCI2ZRL1gDmRAlIaUUpRoFU3oA2gWR0CQu5p2ll9SdX2UKGgGaAloD0MIZAW/DTEXaUCUhpRSlGgVTegDaBZHQJC+RqKxcFB1fZQoaAZoCWgPQwgPSMK+HZRvQJSGlFKUaBVNEQFoFkdAkMeYLb5/LHV9lChoBmgJaA9DCPQVpBmLVmNAlIaUUpRoFU3oA2gWR0CQzI/NZ/0/dX2UKGgGaAloD0MIo7H2d7aKZkCUhpRSlGgVTegDaBZHQJDNHs/pt791fZQoaAZoCWgPQwgbEYyDS5hoQJSGlFKUaBVN6ANoFkdAkM1ErK/203V9lChoBmgJaA9DCIcYr3nVIG5AlIaUUpRoFU1WAWgWR0CQ0MTy8SPEdX2UKGgGaAloD0MINrBVgsWVZECUhpRSlGgVTegDaBZHQJDRjMt9QXR1fZQoaAZoCWgPQwi+aI8XEixzQJSGlFKUaBVN5QJoFkdAkNPaZc9nsnV9lChoBmgJaA9DCHmQniIHKmBAlIaUUpRoFU3oA2gWR0CQ1QBEa2nbdX2UKGgGaAloD0MI+aOoMzeCcUCUhpRSlGgVTY4DaBZHQJDa2QGOdXl1fZQoaAZoCWgPQwjMKJZbWq9eQJSGlFKUaBVN6ANoFkdAkN0PVRUFS3V9lChoBmgJaA9DCNEgBU8h6GVAlIaUUpRoFU3oA2gWR0CQ3rzBAOawdX2UKGgGaAloD0MIVd0jm6vLaECUhpRSlGgVTegDaBZHQJDey3pfQa91fZQoaAZoCWgPQwiIZMix9cJjQJSGlFKUaBVN6ANoFkdAkN9ZJGvwE3V9lChoBmgJaA9DCObN4VptV2VAlIaUUpRoFU3oA2gWR0CQ4Bx6v7m/dX2UKGgGaAloD0MItJCA0WUjcECUhpRSlGgVTX4BaBZHQJDiv+kxh2J1fZQoaAZoCWgPQwgj+UogJUJhQJSGlFKUaBVN6ANoFkdAkOPn7DVH4HV9lChoBmgJaA9DCAn+t5KdoXFAlIaUUpRoFU1KAWgWR0CQ5HIEbHZLdX2UKGgGaAloD0MIAwmKH+OhcECUhpRSlGgVTfgBaBZHQJDkv7655JN1fZQoaAZoCWgPQwjgLCXLyXRxQJSGlFKUaBVNDAFoFkdAkOoU78vVVnV9lChoBmgJaA9DCCqMLQS5emRAlIaUUpRoFU3oA2gWR0CQ/22AoXsPdX2UKGgGaAloD0MIAWxAhDiubkCUhpRSlGgVTcUBaBZHQJEEYOFxn4B1fZQoaAZoCWgPQwjPMSB7fbhwQJSGlFKUaBVNPwNoFkdAkQbuMqBmPHV9lChoBmgJaA9DCJ1Hxf8dAHJAlIaUUpRoFU1WAWgWR0CRB4T8YQ8PdX2UKGgGaAloD0MI6iKFsnAZZECUhpRSlGgVTegDaBZHQJEKD1rZamp1fZQoaAZoCWgPQwhN3CqIwYZwQJSGlFKUaBVNDQJoFkdAkQr1aOgg5nV9lChoBmgJaA9DCF/Rrdc0bHBAlIaUUpRoFU25AWgWR0CRC9OyE+PjdX2UKGgGaAloD0MIaoR+pt5DY0CUhpRSlGgVTegDaBZHQJEODLSuyNZ1fZQoaAZoCWgPQwihTQ6ftI5wQJSGlFKUaBVNXAFoFkdAkQ/iZOSGJ3V9lChoBmgJaA9DCKgavRqgK2RAlIaUUpRoFU3oA2gWR0CREnLNfPX1dX2UKGgGaAloD0MIpgux+iMQZ0CUhpRSlGgVTegDaBZHQJEU3qkdmxt1fZQoaAZoCWgPQwgTSIld21NxQJSGlFKUaBVNVAFoFkdAkRbjQVsUI3V9lChoBmgJaA9DCPQXesRooHBAlIaUUpRoFU3DAWgWR0CRGSV7Qb++dX2UKGgGaAloD0MIcOzZcxl7b0CUhpRSlGgVTVYBaBZHQJEZd2HLzPN1fZQoaAZoCWgPQwiPHOkMjANjQJSGlFKUaBVN6ANoFkdAkRtz2exwAHV9lChoBmgJaA9DCN0/FqJDNmZAlIaUUpRoFU3oA2gWR0CRHrNFz+3pdX2UKGgGaAloD0MIZB75g8EQc0CUhpRSlGgVTeYCaBZHQJEfLHxSYPZ1fZQoaAZoCWgPQwg+WwcHe99fQJSGlFKUaBVN6ANoFkdAkR9DHjp9qnV9lChoBmgJaA9DCAnCFVAojWdAlIaUUpRoFU3oA2gWR0CRIvjNY8uBdX2UKGgGaAloD0MIacai6ewVZECUhpRSlGgVTegDaBZHQJEkIOlO45N1fZQoaAZoCWgPQwh+HM2Rlc8kwJSGlFKUaBVLmWgWR0CRJgqx1PnCdX2UKGgGaAloD0MI61OOyeL6bkCUhpRSlGgVTd0BaBZHQJEn2gg5imV1fZQoaAZoCWgPQwitwmaACzFwQJSGlFKUaBVNqAJoFkdAkSn5tBOYY3V9lChoBmgJaA9DCEhQ/Bgz2XBAlIaUUpRoFU3+AWgWR0CRK4cVxjridX2UKGgGaAloD0MIxXQhVj9NckCUhpRSlGgVTXkBaBZHQJEsB5u63Ap1fZQoaAZoCWgPQwhQx2MGqiZxQJSGlFKUaBVNUwNoFkdAkSzZVbRne3V9lChoBmgJaA9DCC51kNcDunNAlIaUUpRoFU0ZAWgWR0CRQgKaXrt3dX2UKGgGaAloD0MI4etrXeowckCUhpRSlGgVTXUBaBZHQJFCi3WnTAp1fZQoaAZoCWgPQwiHwmfroKBxQJSGlFKUaBVNbwNoFkdAkUelm4Ajp3V9lChoBmgJaA9DCHDP86cN325AlIaUUpRoFU1RAWgWR0CRSWmdiDujdX2UKGgGaAloD0MIq3mOyHffYkCUhpRSlGgVTegDaBZHQJFKBXMhX8x1fZQoaAZoCWgPQwi1bRgFwQtwQJSGlFKUaBVNLQJoFkdAkUof1ct5EHV9lChoBmgJaA9DCILF4cxvl3JAlIaUUpRoFU0LAWgWR0CRS3lNUOurdX2UKGgGaAloD0MImQ0yyYiCcUCUhpRSlGgVTdICaBZHQJFLsBBAv+R1fZQoaAZoCWgPQwjwoxr2e2xwQJSGlFKUaBVNsgFoFkdAkUvjTnaFmHV9lChoBmgJaA9DCAvQtpp1mWZAlIaUUpRoFU3oA2gWR0CRTqVY6nzhdX2UKGgGaAloD0MIJoxmZXticECUhpRSlGgVTYsBaBZHQJFPUoTfzjF1fZQoaAZoCWgPQwiCqPsApBRwQJSGlFKUaBVNaAJoFkdAkVFdBnjABXV9lChoBmgJaA9DCFM8LqrFuW1AlIaUUpRoFU30AWgWR0CRUhoXbdrPdX2UKGgGaAloD0MIRs1XyceNZUCUhpRSlGgVTegDaBZHQJFU8GxD9fl1fZQoaAZoCWgPQwiNl24SgxhiQJSGlFKUaBVN6ANoFkdAkVdZk5IYnHV9lChoBmgJaA9DCIaTNH/M4m5AlIaUUpRoFU0pAWgWR0CRV+z/IbOvdX2UKGgGaAloD0MIHHi13FmFcECUhpRSlGgVTRcCaBZHQJFYwAvL5h11fZQoaAZoCWgPQwgFMjuLHqdxQJSGlFKUaBVNfwFoFkdAkVn9jPOY6XV9lChoBmgJaA9DCNegL719nHFAlIaUUpRoFU2MAWgWR0CRWqWepXIVdX2UKGgGaAloD0MIa9YZ39eYcUCUhpRSlGgVTY0BaBZHQJFb/Z7HAAR1fZQoaAZoCWgPQwj36A33EbNyQJSGlFKUaBVN0wFoFkdAkVzyfYjB23V9lChoBmgJaA9DCJrS+lsCZnFAlIaUUpRoFU2PAWgWR0CRYBpNKyv+dX2UKGgGaAloD0MILlbUYNqmckCUhpRSlGgVTV4BaBZHQJFgOy8jAzp1fZQoaAZoCWgPQwiULv1LUnZtQJSGlFKUaBVNIgFoFkdAkWFetOmBOHV9lChoBmgJaA9DCMaJr3bUtnBAlIaUUpRoFU03A2gWR0CRYd+u/1xsdX2UKGgGaAloD0MI0ZDxKBVOcUCUhpRSlGgVTZACaBZHQJFjWXb/Ot51fZQoaAZoCWgPQwjpfHiWYARwQJSGlFKUaBVNKwFoFkdAkWQIAjps43V9lChoBmgJaA9DCO55/rRRx0FAlIaUUpRoFUvnaBZHQJFsXJ6po9N1fZQoaAZoCWgPQwi8sgsGV/lwQJSGlFKUaBVNsAJoFkdAkWxsNlRP43VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0529c4efcb61d0e9e2fb3e76f373d9f6d20a12fcf22beedab8dbcfdc376adea7
|
3 |
+
size 147424
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f207b8a8670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f207b8a8700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f207b8a8790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f207b8a8820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f207b8a88b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f207b8a8940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f207b8a89d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f207b8a8a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f207b8a8af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f207b8a8b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f207b8a8c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f207b8a8ca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f207b8a1840>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1674000948523485330,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJp1Xr3DoWm6oKf/t/OmZLOdMo+453YTNwAAgD8AAIA/AGzWu0i3nLqq+oW4z/6LNQYCibqaO/y0AACAPwAAgD9mvwK9rlWjusWM37eJv4GyjTiNuoi//jYAAIA/AACAPw1auT0nFWo+EgpZvr0Kbb6atZ29dp6MvQAAAAAAAAAATZ0DPRSYnLo6O+C6PVQItuYO1DrqZQE6AACAPwAAgD+aC0e9w/1tuoaK2Drm45Q0bcElu5Ar+rkAAIA/AACAP01fGj2P8k26NdzrM9SIJzAqHBS7OFKuswAAgD8AAIA/mrQ4vUgDtLotEEe8q9WLPEvkDTq1VXO9AACAPwAAgD9AFYe9SHmJumN1aboJKPy1kcoiu157hTkAAIA/AACAP80Ps7wbu7c/WdU5v9M9rD5F9KI86uy/PQAAAAAAAAAAMwwtvcMZMbpyguq66zcjtUKNj7pyOgk6AACAPwAAgD/NbIA9w9ViurULDDxXbzo1PmpvO2EjLDQAAIA/AACAPxrJE71I4d64bHySOaLVNDWJ1gk8+R+vuAAAgD8AAIA/minYPJS8lTslGw09ppa5vSjMAz2+TPk8AAAAAAAAAABmJ+88XPttuqLLejoA0CE2kRDKupctk7kAAIA/AACAP2amizvvZrM/AjRXPid6Yb4M4E67vulVvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImZ1F71SOY0CUhpRSlIwBbJRN6AOMAXSUR0CQUd81n/T9dX2UKGgGaAloD0MIpn1zf/X7X0CUhpRSlGgVTegDaBZHQJBR7yTY/V11fZQoaAZoCWgPQwh5ymq6noRoQJSGlFKUaBVN6ANoFkdAkFKJmAbyY3V9lChoBmgJaA9DCDwyVpt/ZGRAlIaUUpRoFU3oA2gWR0CQU2bZOBUadX2UKGgGaAloD0MIQZqxaLpxZkCUhpRSlGgVTegDaBZHQJBTyxt52Qp1fZQoaAZoCWgPQwgmOsssQgtvQJSGlFKUaBVNxQJoFkdAkFdiDVYp2HV9lChoBmgJaA9DCKopyTqcsXBAlIaUUpRoFU22AmgWR0CQcXPpY9xIdX2UKGgGaAloD0MI3Qw34HOEZECUhpRSlGgVTegDaBZHQJB0d4W1twd1fZQoaAZoCWgPQwgFU82spZRkQJSGlFKUaBVN6ANoFkdAkHc2D6Fds3V9lChoBmgJaA9DCNRIS+XtyGNAlIaUUpRoFU3oA2gWR0CQhfV32VVxdX2UKGgGaAloD0MIpp2ayw21Y0CUhpRSlGgVTegDaBZHQJCGmqR2bG51fZQoaAZoCWgPQwhNE7afDANlQJSGlFKUaBVN6ANoFkdAkIbNxVAAyXV9lChoBmgJaA9DCBCSBUxgEGlAlIaUUpRoFU3oA2gWR0CQiUCSzPa+dX2UKGgGaAloD0MIBdzz/GkrY0CUhpRSlGgVTegDaBZHQJCLjCAMDwJ1fZQoaAZoCWgPQwjXTL7ZZr1kQJSGlFKUaBVN6ANoFkdAkI9M76pHZ3V9lChoBmgJaA9DCC7kEdzI/mFAlIaUUpRoFU3oA2gWR0CQl6m6GxlhdX2UKGgGaAloD0MIaAdcV0zxZUCUhpRSlGgVTegDaBZHQJCZWilBQep1fZQoaAZoCWgPQwiIad/c35RlQJSGlFKUaBVN6ANoFkdAkJlpV0cOsnV9lChoBmgJaA9DCOY+OQqQ+mBAlIaUUpRoFU3oA2gWR0CQmgt3fQ8fdX2UKGgGaAloD0MIhWBVvTyickCUhpRSlGgVTUkBaBZHQJCaGxoqTbF1fZQoaAZoCWgPQwiq1VdXhTNlQJSGlFKUaBVN6ANoFkdAkJrUIgNgB3V9lChoBmgJaA9DCIy7QbRWQV1AlIaUUpRoFU3oA2gWR0CQmzO5J9RadX2UKGgGaAloD0MInu3RG27ZaECUhpRSlGgVTegDaBZHQJCeoIQe3hJ1fZQoaAZoCWgPQwg8TzxnCytiQJSGlFKUaBVN6ANoFkdAkKVa0IC2dHV9lChoBmgJaA9DCI2ZRL1gDmRAlIaUUpRoFU3oA2gWR0CQu5p2ll9SdX2UKGgGaAloD0MIZAW/DTEXaUCUhpRSlGgVTegDaBZHQJC+RqKxcFB1fZQoaAZoCWgPQwgPSMK+HZRvQJSGlFKUaBVNEQFoFkdAkMeYLb5/LHV9lChoBmgJaA9DCPQVpBmLVmNAlIaUUpRoFU3oA2gWR0CQzI/NZ/0/dX2UKGgGaAloD0MIo7H2d7aKZkCUhpRSlGgVTegDaBZHQJDNHs/pt791fZQoaAZoCWgPQwgbEYyDS5hoQJSGlFKUaBVN6ANoFkdAkM1ErK/203V9lChoBmgJaA9DCIcYr3nVIG5AlIaUUpRoFU1WAWgWR0CQ0MTy8SPEdX2UKGgGaAloD0MINrBVgsWVZECUhpRSlGgVTegDaBZHQJDRjMt9QXR1fZQoaAZoCWgPQwi+aI8XEixzQJSGlFKUaBVN5QJoFkdAkNPaZc9nsnV9lChoBmgJaA9DCHmQniIHKmBAlIaUUpRoFU3oA2gWR0CQ1QBEa2nbdX2UKGgGaAloD0MI+aOoMzeCcUCUhpRSlGgVTY4DaBZHQJDa2QGOdXl1fZQoaAZoCWgPQwjMKJZbWq9eQJSGlFKUaBVN6ANoFkdAkN0PVRUFS3V9lChoBmgJaA9DCNEgBU8h6GVAlIaUUpRoFU3oA2gWR0CQ3rzBAOawdX2UKGgGaAloD0MIVd0jm6vLaECUhpRSlGgVTegDaBZHQJDey3pfQa91fZQoaAZoCWgPQwiIZMix9cJjQJSGlFKUaBVN6ANoFkdAkN9ZJGvwE3V9lChoBmgJaA9DCObN4VptV2VAlIaUUpRoFU3oA2gWR0CQ4Bx6v7m/dX2UKGgGaAloD0MItJCA0WUjcECUhpRSlGgVTX4BaBZHQJDiv+kxh2J1fZQoaAZoCWgPQwgj+UogJUJhQJSGlFKUaBVN6ANoFkdAkOPn7DVH4HV9lChoBmgJaA9DCAn+t5KdoXFAlIaUUpRoFU1KAWgWR0CQ5HIEbHZLdX2UKGgGaAloD0MIAwmKH+OhcECUhpRSlGgVTfgBaBZHQJDkv7655JN1fZQoaAZoCWgPQwjgLCXLyXRxQJSGlFKUaBVNDAFoFkdAkOoU78vVVnV9lChoBmgJaA9DCCqMLQS5emRAlIaUUpRoFU3oA2gWR0CQ/22AoXsPdX2UKGgGaAloD0MIAWxAhDiubkCUhpRSlGgVTcUBaBZHQJEEYOFxn4B1fZQoaAZoCWgPQwjPMSB7fbhwQJSGlFKUaBVNPwNoFkdAkQbuMqBmPHV9lChoBmgJaA9DCJ1Hxf8dAHJAlIaUUpRoFU1WAWgWR0CRB4T8YQ8PdX2UKGgGaAloD0MI6iKFsnAZZECUhpRSlGgVTegDaBZHQJEKD1rZamp1fZQoaAZoCWgPQwhN3CqIwYZwQJSGlFKUaBVNDQJoFkdAkQr1aOgg5nV9lChoBmgJaA9DCF/Rrdc0bHBAlIaUUpRoFU25AWgWR0CRC9OyE+PjdX2UKGgGaAloD0MIaoR+pt5DY0CUhpRSlGgVTegDaBZHQJEODLSuyNZ1fZQoaAZoCWgPQwihTQ6ftI5wQJSGlFKUaBVNXAFoFkdAkQ/iZOSGJ3V9lChoBmgJaA9DCKgavRqgK2RAlIaUUpRoFU3oA2gWR0CREnLNfPX1dX2UKGgGaAloD0MIpgux+iMQZ0CUhpRSlGgVTegDaBZHQJEU3qkdmxt1fZQoaAZoCWgPQwgTSIld21NxQJSGlFKUaBVNVAFoFkdAkRbjQVsUI3V9lChoBmgJaA9DCPQXesRooHBAlIaUUpRoFU3DAWgWR0CRGSV7Qb++dX2UKGgGaAloD0MIcOzZcxl7b0CUhpRSlGgVTVYBaBZHQJEZd2HLzPN1fZQoaAZoCWgPQwiPHOkMjANjQJSGlFKUaBVN6ANoFkdAkRtz2exwAHV9lChoBmgJaA9DCN0/FqJDNmZAlIaUUpRoFU3oA2gWR0CRHrNFz+3pdX2UKGgGaAloD0MIZB75g8EQc0CUhpRSlGgVTeYCaBZHQJEfLHxSYPZ1fZQoaAZoCWgPQwg+WwcHe99fQJSGlFKUaBVN6ANoFkdAkR9DHjp9qnV9lChoBmgJaA9DCAnCFVAojWdAlIaUUpRoFU3oA2gWR0CRIvjNY8uBdX2UKGgGaAloD0MIacai6ewVZECUhpRSlGgVTegDaBZHQJEkIOlO45N1fZQoaAZoCWgPQwh+HM2Rlc8kwJSGlFKUaBVLmWgWR0CRJgqx1PnCdX2UKGgGaAloD0MI61OOyeL6bkCUhpRSlGgVTd0BaBZHQJEn2gg5imV1fZQoaAZoCWgPQwitwmaACzFwQJSGlFKUaBVNqAJoFkdAkSn5tBOYY3V9lChoBmgJaA9DCEhQ/Bgz2XBAlIaUUpRoFU3+AWgWR0CRK4cVxjridX2UKGgGaAloD0MIxXQhVj9NckCUhpRSlGgVTXkBaBZHQJEsB5u63Ap1fZQoaAZoCWgPQwhQx2MGqiZxQJSGlFKUaBVNUwNoFkdAkSzZVbRne3V9lChoBmgJaA9DCC51kNcDunNAlIaUUpRoFU0ZAWgWR0CRQgKaXrt3dX2UKGgGaAloD0MI4etrXeowckCUhpRSlGgVTXUBaBZHQJFCi3WnTAp1fZQoaAZoCWgPQwiHwmfroKBxQJSGlFKUaBVNbwNoFkdAkUelm4Ajp3V9lChoBmgJaA9DCHDP86cN325AlIaUUpRoFU1RAWgWR0CRSWmdiDujdX2UKGgGaAloD0MIq3mOyHffYkCUhpRSlGgVTegDaBZHQJFKBXMhX8x1fZQoaAZoCWgPQwi1bRgFwQtwQJSGlFKUaBVNLQJoFkdAkUof1ct5EHV9lChoBmgJaA9DCILF4cxvl3JAlIaUUpRoFU0LAWgWR0CRS3lNUOurdX2UKGgGaAloD0MImQ0yyYiCcUCUhpRSlGgVTdICaBZHQJFLsBBAv+R1fZQoaAZoCWgPQwjwoxr2e2xwQJSGlFKUaBVNsgFoFkdAkUvjTnaFmHV9lChoBmgJaA9DCAvQtpp1mWZAlIaUUpRoFU3oA2gWR0CRTqVY6nzhdX2UKGgGaAloD0MIJoxmZXticECUhpRSlGgVTYsBaBZHQJFPUoTfzjF1fZQoaAZoCWgPQwiCqPsApBRwQJSGlFKUaBVNaAJoFkdAkVFdBnjABXV9lChoBmgJaA9DCFM8LqrFuW1AlIaUUpRoFU30AWgWR0CRUhoXbdrPdX2UKGgGaAloD0MIRs1XyceNZUCUhpRSlGgVTegDaBZHQJFU8GxD9fl1fZQoaAZoCWgPQwiNl24SgxhiQJSGlFKUaBVN6ANoFkdAkVdZk5IYnHV9lChoBmgJaA9DCIaTNH/M4m5AlIaUUpRoFU0pAWgWR0CRV+z/IbOvdX2UKGgGaAloD0MIHHi13FmFcECUhpRSlGgVTRcCaBZHQJFYwAvL5h11fZQoaAZoCWgPQwgFMjuLHqdxQJSGlFKUaBVNfwFoFkdAkVn9jPOY6XV9lChoBmgJaA9DCNegL719nHFAlIaUUpRoFU2MAWgWR0CRWqWepXIVdX2UKGgGaAloD0MIa9YZ39eYcUCUhpRSlGgVTY0BaBZHQJFb/Z7HAAR1fZQoaAZoCWgPQwj36A33EbNyQJSGlFKUaBVN0wFoFkdAkVzyfYjB23V9lChoBmgJaA9DCJrS+lsCZnFAlIaUUpRoFU2PAWgWR0CRYBpNKyv+dX2UKGgGaAloD0MILlbUYNqmckCUhpRSlGgVTV4BaBZHQJFgOy8jAzp1fZQoaAZoCWgPQwiULv1LUnZtQJSGlFKUaBVNIgFoFkdAkWFetOmBOHV9lChoBmgJaA9DCMaJr3bUtnBAlIaUUpRoFU03A2gWR0CRYd+u/1xsdX2UKGgGaAloD0MI0ZDxKBVOcUCUhpRSlGgVTZACaBZHQJFjWXb/Ot51fZQoaAZoCWgPQwjpfHiWYARwQJSGlFKUaBVNKwFoFkdAkWQIAjps43V9lChoBmgJaA9DCO55/rRRx0FAlIaUUpRoFUvnaBZHQJFsXJ6po9N1fZQoaAZoCWgPQwi8sgsGV/lwQJSGlFKUaBVNsAJoFkdAkWxsNlRP43VlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2340cf9e6a313875f93c2bbe40c3fa79f6ac8bd05e5bb14f4adf57970a6ca2d
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e69844efaf80c838f5f9201279d2b86ef2b0474b4880ffa3e4e8ab9d90180a0
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"mean_reward": 266.55219570093084, "std_reward": 20.622929469052405, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T00:35:26.208868"}
|