rduan6 commited on
Commit
75430c2
1 Parent(s): 0a8f42d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - ncbi_disease
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: model
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: ncbi_disease
20
+ type: ncbi_disease
21
+ config: ncbi_disease
22
+ split: validation
23
+ args: ncbi_disease
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.5537679932260796
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.6312741312741312
31
+ - name: F1
32
+ type: f1
33
+ value: 0.5899864682002707
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9586137150414252
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # model
43
+
44
+ This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the ncbi_disease dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.2138
47
+ - Precision: 0.5538
48
+ - Recall: 0.6313
49
+ - F1: 0.5900
50
+ - Accuracy: 0.9586
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 0.0001
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 5
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.2962 | 1.0 | 679 | 0.1463 | 0.4864 | 0.5010 | 0.4936 | 0.9532 |
82
+ | 0.1321 | 2.0 | 1358 | 0.1482 | 0.4794 | 0.5946 | 0.5308 | 0.9549 |
83
+ | 0.0649 | 3.0 | 2037 | 0.1570 | 0.5307 | 0.6168 | 0.5705 | 0.9577 |
84
+ | 0.0414 | 4.0 | 2716 | 0.1799 | 0.5050 | 0.6390 | 0.5641 | 0.9564 |
85
+ | 0.0316 | 5.0 | 3395 | 0.2138 | 0.5538 | 0.6313 | 0.5900 | 0.9586 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.28.1
91
+ - Pytorch 2.0.0+cu118
92
+ - Datasets 2.11.0
93
+ - Tokenizers 0.13.3