Update README.md
Browse filesAdded information about training and prediction values.
README.md
CHANGED
@@ -5,4 +5,92 @@ language:
|
|
5 |
- it
|
6 |
pipeline_tag: token-classification
|
7 |
license: cc-by-sa-4.0
|
8 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- it
|
6 |
pipeline_tag: token-classification
|
7 |
license: cc-by-sa-4.0
|
8 |
+
---
|
9 |
+
|
10 |
+
# Tagset
|
11 |
+
- O
|
12 |
+
- B-CITATION
|
13 |
+
- I-CITATION
|
14 |
+
- B-LAW
|
15 |
+
- I-LAW
|
16 |
+
|
17 |
+
# Training
|
18 |
+
- The model was trained with the following hyperparamters:
|
19 |
+
- batch size: 64
|
20 |
+
- learning_rate: 0.00001
|
21 |
+
- number of training epochs: 50 (actually trained: 23)
|
22 |
+
- early stopping patience: 5
|
23 |
+
|
24 |
+
# Predict scores
|
25 |
+
|
26 |
+
| \bf metric | \bf score |
|
27 |
+
|---------------------------------|--------------------|
|
28 |
+
| de_predict/_CITATION_f1 | 0.9793131792857794 |
|
29 |
+
| de_predict/_CITATION_precision | 0.9852522282458881 |
|
30 |
+
| de_predict/_CITATION_recall | 0.9734453018610985 |
|
31 |
+
| de_predict/_LAW_f1 | 0.9207842961099632 |
|
32 |
+
| de_predict/_LAW_precision | 0.8598544432559407 |
|
33 |
+
| de_predict/_LAW_recall | 0.9910077594333921 |
|
34 |
+
| de_predict/_accuracy_normalized | 0.9880353522464387 |
|
35 |
+
| de_predict/_macro-f1 | 0.9504272924171073 |
|
36 |
+
| de_predict/_macro-precision | 0.9822265306472453 |
|
37 |
+
| de_predict/_macro-recall | 0.9232171398568052 |
|
38 |
+
| de_predict/_micro-f1 | 0.9405898834091524 |
|
39 |
+
| de_predict/_micro-precision | 0.9849051246865093 |
|
40 |
+
| de_predict/_micro-recall | 0.9000908134288556 |
|
41 |
+
| de_predict/_steps_per_second | 0.549 |
|
42 |
+
| de_predict/_weighted-f1 | 0.939658320951984 |
|
43 |
+
| de_predict/_weighted-precision | 0.9854977355183103 |
|
44 |
+
| de_predict/_weighted-recall | 0.9000908134288556 |
|
45 |
+
| fr_predict/_CITATION_f1 | 0.9554686901203342 |
|
46 |
+
| fr_predict/_CITATION_precision | 0.9684586699813549 |
|
47 |
+
| fr_predict/_CITATION_recall | 0.9428225684465286 |
|
48 |
+
| fr_predict/_LAW_f1 | 0.910095519316377 |
|
49 |
+
| fr_predict/_LAW_precision | 0.8366717393986756 |
|
50 |
+
| fr_predict/_LAW_recall | 0.9976459048553212 |
|
51 |
+
| fr_predict/_accuracy_normalized | 0.9830767480044869 |
|
52 |
+
| fr_predict/_macro-f1 | 0.9330080903677362 |
|
53 |
+
| fr_predict/_macro-precision | 0.9702342366509249 |
|
54 |
+
| fr_predict/_macro-recall | 0.9029739799827206 |
|
55 |
+
| fr_predict/_micro-f1 | 0.920617324580396 |
|
56 |
+
| fr_predict/_micro-precision | 0.9842228065627199 |
|
57 |
+
| fr_predict/_micro-recall | 0.8647338279317974 |
|
58 |
+
| fr_predict/_steps_per_second | 0.593 |
|
59 |
+
| fr_predict/_weighted-f1 | 0.9198669665372888 |
|
60 |
+
| fr_predict/_weighted-precision | 0.9861681830521788 |
|
61 |
+
| fr_predict/_weighted-recall | 0.8647338279317974 |
|
62 |
+
| it_predict/_CITATION_f1 | 0.9703896103896105 |
|
63 |
+
| it_predict/_CITATION_precision | 0.9769874476987448 |
|
64 |
+
| it_predict/_CITATION_recall | 0.9638802889576883 |
|
65 |
+
| it_predict/_LAW_f1 | 0.9099276791584483 |
|
66 |
+
| it_predict/_LAW_precision | 0.8422590068159689 |
|
67 |
+
| it_predict/_LAW_recall | 0.9894195024306548 |
|
68 |
+
| it_predict/_accuracy_normalized | 0.9892137683075134 |
|
69 |
+
| it_predict/_macro-f1 | 0.9413484848298093 |
|
70 |
+
| it_predict/_macro-precision | 0.9766498956941716 |
|
71 |
+
| it_predict/_macro-recall | 0.9119834901073706 |
|
72 |
+
| it_predict/_micro-f1 | 0.9311429570080392 |
|
73 |
+
| it_predict/_micro-precision | 0.9803127874885005 |
|
74 |
+
| it_predict/_micro-recall | 0.8866699950074888 |
|
75 |
+
| it_predict/_steps_per_second | 0.563 |
|
76 |
+
| it_predict/_weighted-f1 | 0.929971077318579 |
|
77 |
+
| it_predict/_weighted-precision | 0.9813271971464931 |
|
78 |
+
| it_predict/_weighted-recall | 0.8866699950074888 |
|
79 |
+
| predict/_CITATION_f1 | 0.973621340187501 |
|
80 |
+
| predict/_CITATION_precision | 0.981138340970977 |
|
81 |
+
| predict/_CITATION_recall | 0.9662186467837405 |
|
82 |
+
| predict/_LAW_f1 | 0.9168199439712499 |
|
83 |
+
| predict/_LAW_precision | 0.8514980289093298 |
|
84 |
+
| predict/_LAW_recall | 0.9929968125536349 |
|
85 |
+
| predict/_accuracy_normalized | 0.986841752305624 |
|
86 |
+
| predict/_macro-f1 | 0.9455976917351873 |
|
87 |
+
| predict/_macro-precision | 0.9796077296686877 |
|
88 |
+
| predict/_macro-recall | 0.9169959471957758 |
|
89 |
+
| predict/_micro-f1 | 0.934344809828224 |
|
90 |
+
| predict/_micro-precision | 0.9844524443053164 |
|
91 |
+
| predict/_micro-recall | 0.8890909776278342 |
|
92 |
+
| predict/_steps_per_second | 0.557 |
|
93 |
+
| predict/_weighted-f1 | 0.9333974918752409 |
|
94 |
+
| predict/_weighted-precision | 0.9854002360022739 |
|
95 |
+
| predict/_weighted-recall | 0.8890909776278342 |
|
96 |
+
| predict_samples | 28218 |
|