Add new SentenceTransformer model.
Browse files- README.md +248 -239
- model.safetensors +1 -1
README.md
CHANGED
@@ -27,52 +27,51 @@ tags:
|
|
27 |
- sentence-similarity
|
28 |
- feature-extraction
|
29 |
- generated_from_trainer
|
30 |
-
- dataset_size:
|
31 |
- loss:MatryoshkaLoss
|
32 |
- loss:MultipleNegativesRankingLoss
|
33 |
widget:
|
34 |
-
- source_sentence:
|
35 |
-
|
36 |
-
|
|
|
37 |
sentences:
|
38 |
-
-
|
39 |
-
|
40 |
-
- What is
|
41 |
-
-
|
42 |
-
|
|
|
43 |
sentences:
|
44 |
-
-
|
45 |
-
|
46 |
-
-
|
47 |
-
|
48 |
-
|
49 |
-
of Microsoft corporation?
|
50 |
-
- source_sentence: As of December 31, 2023, Bank of America had total loans and leases
|
51 |
-
in its consumer real estate portfolio amounting to approximately $262 billion.
|
52 |
sentences:
|
53 |
-
-
|
54 |
-
|
55 |
-
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
61 |
sentences:
|
62 |
-
- What
|
63 |
-
|
64 |
-
-
|
65 |
-
|
66 |
-
- source_sentence:
|
67 |
-
|
68 |
sentences:
|
69 |
-
-
|
70 |
-
|
71 |
-
- What
|
72 |
-
|
73 |
-
- What prompted Tesla's stock to surge in 2020?
|
74 |
model-index:
|
75 |
-
- name: gte-large-en-v1.5-financial-
|
76 |
results:
|
77 |
- task:
|
78 |
type: information-retrieval
|
@@ -82,49 +81,49 @@ model-index:
|
|
82 |
type: dim_1024
|
83 |
metrics:
|
84 |
- type: cosine_accuracy@1
|
85 |
-
value: 0.
|
86 |
name: Cosine Accuracy@1
|
87 |
- type: cosine_accuracy@3
|
88 |
-
value: 0.
|
89 |
name: Cosine Accuracy@3
|
90 |
- type: cosine_accuracy@5
|
91 |
-
value: 0.
|
92 |
name: Cosine Accuracy@5
|
93 |
- type: cosine_accuracy@10
|
94 |
-
value: 0.
|
95 |
name: Cosine Accuracy@10
|
96 |
- type: cosine_precision@1
|
97 |
-
value: 0.
|
98 |
name: Cosine Precision@1
|
99 |
- type: cosine_precision@3
|
100 |
-
value: 0.
|
101 |
name: Cosine Precision@3
|
102 |
- type: cosine_precision@5
|
103 |
-
value: 0.
|
104 |
name: Cosine Precision@5
|
105 |
- type: cosine_precision@10
|
106 |
-
value: 0.
|
107 |
name: Cosine Precision@10
|
108 |
- type: cosine_recall@1
|
109 |
-
value: 0.
|
110 |
name: Cosine Recall@1
|
111 |
- type: cosine_recall@3
|
112 |
-
value: 0.
|
113 |
name: Cosine Recall@3
|
114 |
- type: cosine_recall@5
|
115 |
-
value: 0.
|
116 |
name: Cosine Recall@5
|
117 |
- type: cosine_recall@10
|
118 |
-
value: 0.
|
119 |
name: Cosine Recall@10
|
120 |
- type: cosine_ndcg@10
|
121 |
-
value: 0.
|
122 |
name: Cosine Ndcg@10
|
123 |
- type: cosine_mrr@10
|
124 |
-
value: 0.
|
125 |
name: Cosine Mrr@10
|
126 |
- type: cosine_map@100
|
127 |
-
value: 0.
|
128 |
name: Cosine Map@100
|
129 |
- task:
|
130 |
type: information-retrieval
|
@@ -134,49 +133,49 @@ model-index:
|
|
134 |
type: dim_768
|
135 |
metrics:
|
136 |
- type: cosine_accuracy@1
|
137 |
-
value: 0.
|
138 |
name: Cosine Accuracy@1
|
139 |
- type: cosine_accuracy@3
|
140 |
-
value: 0.
|
141 |
name: Cosine Accuracy@3
|
142 |
- type: cosine_accuracy@5
|
143 |
-
value: 0.
|
144 |
name: Cosine Accuracy@5
|
145 |
- type: cosine_accuracy@10
|
146 |
-
value: 0.
|
147 |
name: Cosine Accuracy@10
|
148 |
- type: cosine_precision@1
|
149 |
-
value: 0.
|
150 |
name: Cosine Precision@1
|
151 |
- type: cosine_precision@3
|
152 |
-
value: 0.
|
153 |
name: Cosine Precision@3
|
154 |
- type: cosine_precision@5
|
155 |
-
value: 0.
|
156 |
name: Cosine Precision@5
|
157 |
- type: cosine_precision@10
|
158 |
-
value: 0.
|
159 |
name: Cosine Precision@10
|
160 |
- type: cosine_recall@1
|
161 |
-
value: 0.
|
162 |
name: Cosine Recall@1
|
163 |
- type: cosine_recall@3
|
164 |
-
value: 0.
|
165 |
name: Cosine Recall@3
|
166 |
- type: cosine_recall@5
|
167 |
-
value: 0.
|
168 |
name: Cosine Recall@5
|
169 |
- type: cosine_recall@10
|
170 |
-
value: 0.
|
171 |
name: Cosine Recall@10
|
172 |
- type: cosine_ndcg@10
|
173 |
-
value: 0.
|
174 |
name: Cosine Ndcg@10
|
175 |
- type: cosine_mrr@10
|
176 |
-
value: 0.
|
177 |
name: Cosine Mrr@10
|
178 |
- type: cosine_map@100
|
179 |
-
value: 0.
|
180 |
name: Cosine Map@100
|
181 |
- task:
|
182 |
type: information-retrieval
|
@@ -186,49 +185,49 @@ model-index:
|
|
186 |
type: dim_512
|
187 |
metrics:
|
188 |
- type: cosine_accuracy@1
|
189 |
-
value: 0.
|
190 |
name: Cosine Accuracy@1
|
191 |
- type: cosine_accuracy@3
|
192 |
-
value: 0.
|
193 |
name: Cosine Accuracy@3
|
194 |
- type: cosine_accuracy@5
|
195 |
-
value: 0.
|
196 |
name: Cosine Accuracy@5
|
197 |
- type: cosine_accuracy@10
|
198 |
-
value: 0.
|
199 |
name: Cosine Accuracy@10
|
200 |
- type: cosine_precision@1
|
201 |
-
value: 0.
|
202 |
name: Cosine Precision@1
|
203 |
- type: cosine_precision@3
|
204 |
-
value: 0.
|
205 |
name: Cosine Precision@3
|
206 |
- type: cosine_precision@5
|
207 |
-
value: 0.
|
208 |
name: Cosine Precision@5
|
209 |
- type: cosine_precision@10
|
210 |
-
value: 0.
|
211 |
name: Cosine Precision@10
|
212 |
- type: cosine_recall@1
|
213 |
-
value: 0.
|
214 |
name: Cosine Recall@1
|
215 |
- type: cosine_recall@3
|
216 |
-
value: 0.
|
217 |
name: Cosine Recall@3
|
218 |
- type: cosine_recall@5
|
219 |
-
value: 0.
|
220 |
name: Cosine Recall@5
|
221 |
- type: cosine_recall@10
|
222 |
-
value: 0.
|
223 |
name: Cosine Recall@10
|
224 |
- type: cosine_ndcg@10
|
225 |
-
value: 0.
|
226 |
name: Cosine Ndcg@10
|
227 |
- type: cosine_mrr@10
|
228 |
-
value: 0.
|
229 |
name: Cosine Mrr@10
|
230 |
- type: cosine_map@100
|
231 |
-
value: 0.
|
232 |
name: Cosine Map@100
|
233 |
- task:
|
234 |
type: information-retrieval
|
@@ -238,49 +237,49 @@ model-index:
|
|
238 |
type: dim_256
|
239 |
metrics:
|
240 |
- type: cosine_accuracy@1
|
241 |
-
value: 0.
|
242 |
name: Cosine Accuracy@1
|
243 |
- type: cosine_accuracy@3
|
244 |
-
value: 0.
|
245 |
name: Cosine Accuracy@3
|
246 |
- type: cosine_accuracy@5
|
247 |
-
value: 0.
|
248 |
name: Cosine Accuracy@5
|
249 |
- type: cosine_accuracy@10
|
250 |
-
value: 0.
|
251 |
name: Cosine Accuracy@10
|
252 |
- type: cosine_precision@1
|
253 |
-
value: 0.
|
254 |
name: Cosine Precision@1
|
255 |
- type: cosine_precision@3
|
256 |
-
value: 0.
|
257 |
name: Cosine Precision@3
|
258 |
- type: cosine_precision@5
|
259 |
-
value: 0.
|
260 |
name: Cosine Precision@5
|
261 |
- type: cosine_precision@10
|
262 |
-
value: 0.
|
263 |
name: Cosine Precision@10
|
264 |
- type: cosine_recall@1
|
265 |
-
value: 0.
|
266 |
name: Cosine Recall@1
|
267 |
- type: cosine_recall@3
|
268 |
-
value: 0.
|
269 |
name: Cosine Recall@3
|
270 |
- type: cosine_recall@5
|
271 |
-
value: 0.
|
272 |
name: Cosine Recall@5
|
273 |
- type: cosine_recall@10
|
274 |
-
value: 0.
|
275 |
name: Cosine Recall@10
|
276 |
- type: cosine_ndcg@10
|
277 |
-
value: 0.
|
278 |
name: Cosine Ndcg@10
|
279 |
- type: cosine_mrr@10
|
280 |
-
value: 0.
|
281 |
name: Cosine Mrr@10
|
282 |
- type: cosine_map@100
|
283 |
-
value: 0.
|
284 |
name: Cosine Map@100
|
285 |
- task:
|
286 |
type: information-retrieval
|
@@ -290,49 +289,49 @@ model-index:
|
|
290 |
type: dim_128
|
291 |
metrics:
|
292 |
- type: cosine_accuracy@1
|
293 |
-
value: 0.
|
294 |
name: Cosine Accuracy@1
|
295 |
- type: cosine_accuracy@3
|
296 |
-
value: 0.
|
297 |
name: Cosine Accuracy@3
|
298 |
- type: cosine_accuracy@5
|
299 |
-
value: 0.
|
300 |
name: Cosine Accuracy@5
|
301 |
- type: cosine_accuracy@10
|
302 |
-
value: 0.
|
303 |
name: Cosine Accuracy@10
|
304 |
- type: cosine_precision@1
|
305 |
-
value: 0.
|
306 |
name: Cosine Precision@1
|
307 |
- type: cosine_precision@3
|
308 |
-
value: 0.
|
309 |
name: Cosine Precision@3
|
310 |
- type: cosine_precision@5
|
311 |
-
value: 0.
|
312 |
name: Cosine Precision@5
|
313 |
- type: cosine_precision@10
|
314 |
-
value: 0.
|
315 |
name: Cosine Precision@10
|
316 |
- type: cosine_recall@1
|
317 |
-
value: 0.
|
318 |
name: Cosine Recall@1
|
319 |
- type: cosine_recall@3
|
320 |
-
value: 0.
|
321 |
name: Cosine Recall@3
|
322 |
- type: cosine_recall@5
|
323 |
-
value: 0.
|
324 |
name: Cosine Recall@5
|
325 |
- type: cosine_recall@10
|
326 |
-
value: 0.
|
327 |
name: Cosine Recall@10
|
328 |
- type: cosine_ndcg@10
|
329 |
-
value: 0.
|
330 |
name: Cosine Ndcg@10
|
331 |
- type: cosine_mrr@10
|
332 |
-
value: 0.
|
333 |
name: Cosine Mrr@10
|
334 |
- type: cosine_map@100
|
335 |
-
value: 0.
|
336 |
name: Cosine Map@100
|
337 |
- task:
|
338 |
type: information-retrieval
|
@@ -342,53 +341,53 @@ model-index:
|
|
342 |
type: dim_64
|
343 |
metrics:
|
344 |
- type: cosine_accuracy@1
|
345 |
-
value: 0.
|
346 |
name: Cosine Accuracy@1
|
347 |
- type: cosine_accuracy@3
|
348 |
-
value: 0.
|
349 |
name: Cosine Accuracy@3
|
350 |
- type: cosine_accuracy@5
|
351 |
-
value: 0.
|
352 |
name: Cosine Accuracy@5
|
353 |
- type: cosine_accuracy@10
|
354 |
-
value: 0.
|
355 |
name: Cosine Accuracy@10
|
356 |
- type: cosine_precision@1
|
357 |
-
value: 0.
|
358 |
name: Cosine Precision@1
|
359 |
- type: cosine_precision@3
|
360 |
-
value: 0.
|
361 |
name: Cosine Precision@3
|
362 |
- type: cosine_precision@5
|
363 |
-
value: 0.
|
364 |
name: Cosine Precision@5
|
365 |
- type: cosine_precision@10
|
366 |
-
value: 0.
|
367 |
name: Cosine Precision@10
|
368 |
- type: cosine_recall@1
|
369 |
-
value: 0.
|
370 |
name: Cosine Recall@1
|
371 |
- type: cosine_recall@3
|
372 |
-
value: 0.
|
373 |
name: Cosine Recall@3
|
374 |
- type: cosine_recall@5
|
375 |
-
value: 0.
|
376 |
name: Cosine Recall@5
|
377 |
- type: cosine_recall@10
|
378 |
-
value: 0.
|
379 |
name: Cosine Recall@10
|
380 |
- type: cosine_ndcg@10
|
381 |
-
value: 0.
|
382 |
name: Cosine Ndcg@10
|
383 |
- type: cosine_mrr@10
|
384 |
-
value: 0.
|
385 |
name: Cosine Mrr@10
|
386 |
- type: cosine_map@100
|
387 |
-
value: 0.
|
388 |
name: Cosine Map@100
|
389 |
---
|
390 |
|
391 |
-
# gte-large-en-v1.5-financial-
|
392 |
|
393 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
394 |
|
@@ -437,9 +436,9 @@ from sentence_transformers import SentenceTransformer
|
|
437 |
model = SentenceTransformer("rbhatia46/gte-large-en-v1.5-financial-rag-matryoshka")
|
438 |
# Run inference
|
439 |
sentences = [
|
440 |
-
'
|
441 |
-
|
442 |
-
|
443 |
]
|
444 |
embeddings = model.encode(sentences)
|
445 |
print(embeddings.shape)
|
@@ -485,21 +484,21 @@ You can finetune this model on your own dataset.
|
|
485 |
|
486 |
| Metric | Value |
|
487 |
|:--------------------|:-----------|
|
488 |
-
| cosine_accuracy@1 | 0.
|
489 |
-
| cosine_accuracy@3 | 0.
|
490 |
-
| cosine_accuracy@5 | 0.
|
491 |
-
| cosine_accuracy@10 | 0.
|
492 |
-
| cosine_precision@1 | 0.
|
493 |
-
| cosine_precision@3 | 0.
|
494 |
-
| cosine_precision@5 | 0.
|
495 |
-
| cosine_precision@10 | 0.
|
496 |
-
| cosine_recall@1 | 0.
|
497 |
-
| cosine_recall@3 | 0.
|
498 |
-
| cosine_recall@5 | 0.
|
499 |
-
| cosine_recall@10 | 0.
|
500 |
-
| cosine_ndcg@10 | 0.
|
501 |
-
| cosine_mrr@10 | 0.
|
502 |
-
| **cosine_map@100** | **0.
|
503 |
|
504 |
#### Information Retrieval
|
505 |
* Dataset: `dim_768`
|
@@ -507,21 +506,21 @@ You can finetune this model on your own dataset.
|
|
507 |
|
508 |
| Metric | Value |
|
509 |
|:--------------------|:-----------|
|
510 |
-
| cosine_accuracy@1 | 0.
|
511 |
-
| cosine_accuracy@3 | 0.
|
512 |
-
| cosine_accuracy@5 | 0.
|
513 |
-
| cosine_accuracy@10 | 0.
|
514 |
-
| cosine_precision@1 | 0.
|
515 |
-
| cosine_precision@3 | 0.
|
516 |
-
| cosine_precision@5 | 0.
|
517 |
-
| cosine_precision@10 | 0.
|
518 |
-
| cosine_recall@1 | 0.
|
519 |
-
| cosine_recall@3 | 0.
|
520 |
-
| cosine_recall@5 | 0.
|
521 |
-
| cosine_recall@10 | 0.
|
522 |
-
| cosine_ndcg@10 | 0.
|
523 |
-
| cosine_mrr@10 | 0.
|
524 |
-
| **cosine_map@100** | **0.
|
525 |
|
526 |
#### Information Retrieval
|
527 |
* Dataset: `dim_512`
|
@@ -529,21 +528,21 @@ You can finetune this model on your own dataset.
|
|
529 |
|
530 |
| Metric | Value |
|
531 |
|:--------------------|:-----------|
|
532 |
-
| cosine_accuracy@1 | 0.
|
533 |
-
| cosine_accuracy@3 | 0.
|
534 |
-
| cosine_accuracy@5 | 0.
|
535 |
-
| cosine_accuracy@10 | 0.
|
536 |
-
| cosine_precision@1 | 0.
|
537 |
-
| cosine_precision@3 | 0.
|
538 |
-
| cosine_precision@5 | 0.
|
539 |
-
| cosine_precision@10 | 0.
|
540 |
-
| cosine_recall@1 | 0.
|
541 |
-
| cosine_recall@3 | 0.
|
542 |
-
| cosine_recall@5 | 0.
|
543 |
-
| cosine_recall@10 | 0.
|
544 |
-
| cosine_ndcg@10 | 0.
|
545 |
-
| cosine_mrr@10 | 0.
|
546 |
-
| **cosine_map@100** | **0.
|
547 |
|
548 |
#### Information Retrieval
|
549 |
* Dataset: `dim_256`
|
@@ -551,65 +550,65 @@ You can finetune this model on your own dataset.
|
|
551 |
|
552 |
| Metric | Value |
|
553 |
|:--------------------|:-----------|
|
554 |
-
| cosine_accuracy@1 | 0.
|
555 |
-
| cosine_accuracy@3 | 0.
|
556 |
-
| cosine_accuracy@5 | 0.
|
557 |
-
| cosine_accuracy@10 | 0.
|
558 |
-
| cosine_precision@1 | 0.
|
559 |
-
| cosine_precision@3 | 0.
|
560 |
-
| cosine_precision@5 | 0.
|
561 |
| cosine_precision@10 | 0.0991 |
|
562 |
-
| cosine_recall@1 | 0.
|
563 |
-
| cosine_recall@3 | 0.
|
564 |
-
| cosine_recall@5 | 0.
|
565 |
-
| cosine_recall@10 | 0.
|
566 |
-
| cosine_ndcg@10 | 0.
|
567 |
-
| cosine_mrr@10 | 0.
|
568 |
-
| **cosine_map@100** | **0.
|
569 |
|
570 |
#### Information Retrieval
|
571 |
* Dataset: `dim_128`
|
572 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
573 |
|
574 |
-
| Metric | Value
|
575 |
-
|
576 |
-
| cosine_accuracy@1 | 0.
|
577 |
-
| cosine_accuracy@3 | 0.
|
578 |
-
| cosine_accuracy@5 | 0.
|
579 |
-
| cosine_accuracy@10 | 0.
|
580 |
-
| cosine_precision@1 | 0.
|
581 |
-
| cosine_precision@3 | 0.
|
582 |
-
| cosine_precision@5 | 0.
|
583 |
-
| cosine_precision@10 | 0.
|
584 |
-
| cosine_recall@1 | 0.
|
585 |
-
| cosine_recall@3 | 0.
|
586 |
-
| cosine_recall@5 | 0.
|
587 |
-
| cosine_recall@10 | 0.
|
588 |
-
| cosine_ndcg@10 | 0.
|
589 |
-
| cosine_mrr@10 | 0.
|
590 |
-
| **cosine_map@100** | **0.
|
591 |
|
592 |
#### Information Retrieval
|
593 |
* Dataset: `dim_64`
|
594 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
595 |
|
596 |
-
| Metric | Value
|
597 |
-
|
598 |
-
| cosine_accuracy@1 | 0.
|
599 |
-
| cosine_accuracy@3 | 0.
|
600 |
-
| cosine_accuracy@5 | 0.
|
601 |
-
| cosine_accuracy@10 | 0.
|
602 |
-
| cosine_precision@1 | 0.
|
603 |
-
| cosine_precision@3 | 0.
|
604 |
-
| cosine_precision@5 | 0.
|
605 |
-
| cosine_precision@10 | 0.
|
606 |
-
| cosine_recall@1 | 0.
|
607 |
-
| cosine_recall@3 | 0.
|
608 |
-
| cosine_recall@5 | 0.
|
609 |
-
| cosine_recall@10 | 0.
|
610 |
-
| cosine_ndcg@10 | 0.
|
611 |
-
| cosine_mrr@10 | 0.
|
612 |
-
| **cosine_map@100** | **0.
|
613 |
|
614 |
<!--
|
615 |
## Bias, Risks and Limitations
|
@@ -630,19 +629,19 @@ You can finetune this model on your own dataset.
|
|
630 |
#### Unnamed Dataset
|
631 |
|
632 |
|
633 |
-
* Size:
|
634 |
* Columns: <code>positive</code> and <code>anchor</code>
|
635 |
* Approximate statistics based on the first 1000 samples:
|
636 |
| | positive | anchor |
|
637 |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
638 |
| type | string | string |
|
639 |
-
| details | <ul><li>min: 15 tokens</li><li>mean: 44.
|
640 |
* Samples:
|
641 |
-
| positive
|
642 |
-
|
643 |
-
| <code>
|
644 |
-
| <code>
|
645 |
-
| <code>JPMorgan Chase
|
646 |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
647 |
```json
|
648 |
{
|
@@ -675,7 +674,7 @@ You can finetune this model on your own dataset.
|
|
675 |
- `per_device_eval_batch_size`: 16
|
676 |
- `gradient_accumulation_steps`: 16
|
677 |
- `learning_rate`: 2e-05
|
678 |
-
- `num_train_epochs`:
|
679 |
- `lr_scheduler_type`: cosine
|
680 |
- `warmup_ratio`: 0.1
|
681 |
- `bf16`: True
|
@@ -703,7 +702,7 @@ You can finetune this model on your own dataset.
|
|
703 |
- `adam_beta2`: 0.999
|
704 |
- `adam_epsilon`: 1e-08
|
705 |
- `max_grad_norm`: 1.0
|
706 |
-
- `num_train_epochs`:
|
707 |
- `max_steps`: -1
|
708 |
- `lr_scheduler_type`: cosine
|
709 |
- `lr_scheduler_kwargs`: {}
|
@@ -801,12 +800,22 @@ You can finetune this model on your own dataset.
|
|
801 |
### Training Logs
|
802 |
| Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|
803 |
|:-------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
|
804 |
-
|
|
805 |
-
| 1.
|
806 |
-
|
|
807 |
-
|
|
808 |
-
|
|
809 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
810 |
|
811 |
* The bold row denotes the saved checkpoint.
|
812 |
|
|
|
27 |
- sentence-similarity
|
28 |
- feature-extraction
|
29 |
- generated_from_trainer
|
30 |
+
- dataset_size:4275
|
31 |
- loss:MatryoshkaLoss
|
32 |
- loss:MultipleNegativesRankingLoss
|
33 |
widget:
|
34 |
+
- source_sentence: The fundamental elements of Goldman Sachs’ robust risk culture
|
35 |
+
include governance, risk identification, measurement, mitigation, culture and
|
36 |
+
conduct, and infrastructure. They believe these elements work together to complement
|
37 |
+
and reinforce each other to produce a comprehensive view of risk management.
|
38 |
sentences:
|
39 |
+
- What are the financial highlights for Bank of America Corp. in its latest fiscal
|
40 |
+
year report?
|
41 |
+
- What is Berkshire Hathaway's involvement in the energy sector?
|
42 |
+
- What is Goldman Sach’s approach towards maintaining a robust risk culture?
|
43 |
+
- source_sentence: HealthTech Inc.'s new drug for diabetes treatment, launched in
|
44 |
+
2021, contributed to approximately 30% of its total revenues for that year.
|
45 |
sentences:
|
46 |
+
- What is IBM's debt to equity ratio as of 2022?
|
47 |
+
- In what way does HealthTech Inc's new drug contribute to its revenue generation?
|
48 |
+
- What is the revenue breakdown of Alphabet for the year 2021?
|
49 |
+
- source_sentence: The driving factor behind Tesla’s 2023 growth was the surge in
|
50 |
+
demand for electric vehicles.
|
|
|
|
|
|
|
51 |
sentences:
|
52 |
+
- Why did McDonald's observe a decrease in overall revenue in 2023 relative to 2022?
|
53 |
+
- What key strategy did Walmart employ to boost its sales in 2016?
|
54 |
+
- What was the driving factor behind Tesla's growth in 2023?
|
55 |
+
- source_sentence: Pfizer is committed to ensuring that people around the world have
|
56 |
+
access to its medical products. In line with this commitment, Pfizer has implemented
|
57 |
+
programs such as donation drives, price reduction initiatives, and patient assistance
|
58 |
+
programs to aid those in need. Furthermore, through partnerships with NGOs and
|
59 |
+
governments, Pfizer strives to strengthen healthcare systems in underprivileged
|
60 |
+
regions.
|
61 |
sentences:
|
62 |
+
- What is the strategy of Pfizer to improve access to medicines in underprivileged
|
63 |
+
areas?
|
64 |
+
- What percentage of growth in revenue did Adobe Systems report in June 2020?
|
65 |
+
- How is Citigroup differentiating itself among other banks?
|
66 |
+
- source_sentence: JP Morgan reported total deposits of $2.6 trillion in the year
|
67 |
+
ending December 31, 2023.
|
68 |
sentences:
|
69 |
+
- In the fiscal year 2023, what impact did the acquisition of T-Mobile bring to
|
70 |
+
the revenue of AT&T?
|
71 |
+
- What is the primary source of revenue for the software company, Microsoft?
|
72 |
+
- What were JP Morgan's total deposits in 2023?
|
|
|
73 |
model-index:
|
74 |
+
- name: gte-large-en-v1.5-financial-rag-matryoshka
|
75 |
results:
|
76 |
- task:
|
77 |
type: information-retrieval
|
|
|
81 |
type: dim_1024
|
82 |
metrics:
|
83 |
- type: cosine_accuracy@1
|
84 |
+
value: 0.88
|
85 |
name: Cosine Accuracy@1
|
86 |
- type: cosine_accuracy@3
|
87 |
+
value: 0.96
|
88 |
name: Cosine Accuracy@3
|
89 |
- type: cosine_accuracy@5
|
90 |
+
value: 0.9866666666666667
|
91 |
name: Cosine Accuracy@5
|
92 |
- type: cosine_accuracy@10
|
93 |
+
value: 0.9955555555555555
|
94 |
name: Cosine Accuracy@10
|
95 |
- type: cosine_precision@1
|
96 |
+
value: 0.88
|
97 |
name: Cosine Precision@1
|
98 |
- type: cosine_precision@3
|
99 |
+
value: 0.32
|
100 |
name: Cosine Precision@3
|
101 |
- type: cosine_precision@5
|
102 |
+
value: 0.19733333333333336
|
103 |
name: Cosine Precision@5
|
104 |
- type: cosine_precision@10
|
105 |
+
value: 0.09955555555555556
|
106 |
name: Cosine Precision@10
|
107 |
- type: cosine_recall@1
|
108 |
+
value: 0.88
|
109 |
name: Cosine Recall@1
|
110 |
- type: cosine_recall@3
|
111 |
+
value: 0.96
|
112 |
name: Cosine Recall@3
|
113 |
- type: cosine_recall@5
|
114 |
+
value: 0.9866666666666667
|
115 |
name: Cosine Recall@5
|
116 |
- type: cosine_recall@10
|
117 |
+
value: 0.9955555555555555
|
118 |
name: Cosine Recall@10
|
119 |
- type: cosine_ndcg@10
|
120 |
+
value: 0.9426916896167131
|
121 |
name: Cosine Ndcg@10
|
122 |
- type: cosine_mrr@10
|
123 |
+
value: 0.9251851851851851
|
124 |
name: Cosine Mrr@10
|
125 |
- type: cosine_map@100
|
126 |
+
value: 0.925362962962963
|
127 |
name: Cosine Map@100
|
128 |
- task:
|
129 |
type: information-retrieval
|
|
|
133 |
type: dim_768
|
134 |
metrics:
|
135 |
- type: cosine_accuracy@1
|
136 |
+
value: 0.88
|
137 |
name: Cosine Accuracy@1
|
138 |
- type: cosine_accuracy@3
|
139 |
+
value: 0.96
|
140 |
name: Cosine Accuracy@3
|
141 |
- type: cosine_accuracy@5
|
142 |
+
value: 0.9866666666666667
|
143 |
name: Cosine Accuracy@5
|
144 |
- type: cosine_accuracy@10
|
145 |
+
value: 0.9911111111111112
|
146 |
name: Cosine Accuracy@10
|
147 |
- type: cosine_precision@1
|
148 |
+
value: 0.88
|
149 |
name: Cosine Precision@1
|
150 |
- type: cosine_precision@3
|
151 |
+
value: 0.32
|
152 |
name: Cosine Precision@3
|
153 |
- type: cosine_precision@5
|
154 |
+
value: 0.19733333333333336
|
155 |
name: Cosine Precision@5
|
156 |
- type: cosine_precision@10
|
157 |
+
value: 0.09911111111111114
|
158 |
name: Cosine Precision@10
|
159 |
- type: cosine_recall@1
|
160 |
+
value: 0.88
|
161 |
name: Cosine Recall@1
|
162 |
- type: cosine_recall@3
|
163 |
+
value: 0.96
|
164 |
name: Cosine Recall@3
|
165 |
- type: cosine_recall@5
|
166 |
+
value: 0.9866666666666667
|
167 |
name: Cosine Recall@5
|
168 |
- type: cosine_recall@10
|
169 |
+
value: 0.9911111111111112
|
170 |
name: Cosine Recall@10
|
171 |
- type: cosine_ndcg@10
|
172 |
+
value: 0.940825047039427
|
173 |
name: Cosine Ndcg@10
|
174 |
- type: cosine_mrr@10
|
175 |
+
value: 0.924
|
176 |
name: Cosine Mrr@10
|
177 |
- type: cosine_map@100
|
178 |
+
value: 0.9245274971941638
|
179 |
name: Cosine Map@100
|
180 |
- task:
|
181 |
type: information-retrieval
|
|
|
185 |
type: dim_512
|
186 |
metrics:
|
187 |
- type: cosine_accuracy@1
|
188 |
+
value: 0.8711111111111111
|
189 |
name: Cosine Accuracy@1
|
190 |
- type: cosine_accuracy@3
|
191 |
+
value: 0.96
|
192 |
name: Cosine Accuracy@3
|
193 |
- type: cosine_accuracy@5
|
194 |
+
value: 0.9866666666666667
|
195 |
name: Cosine Accuracy@5
|
196 |
- type: cosine_accuracy@10
|
197 |
+
value: 0.9911111111111112
|
198 |
name: Cosine Accuracy@10
|
199 |
- type: cosine_precision@1
|
200 |
+
value: 0.8711111111111111
|
201 |
name: Cosine Precision@1
|
202 |
- type: cosine_precision@3
|
203 |
+
value: 0.32
|
204 |
name: Cosine Precision@3
|
205 |
- type: cosine_precision@5
|
206 |
+
value: 0.19733333333333336
|
207 |
name: Cosine Precision@5
|
208 |
- type: cosine_precision@10
|
209 |
+
value: 0.09911111111111114
|
210 |
name: Cosine Precision@10
|
211 |
- type: cosine_recall@1
|
212 |
+
value: 0.8711111111111111
|
213 |
name: Cosine Recall@1
|
214 |
- type: cosine_recall@3
|
215 |
+
value: 0.96
|
216 |
name: Cosine Recall@3
|
217 |
- type: cosine_recall@5
|
218 |
+
value: 0.9866666666666667
|
219 |
name: Cosine Recall@5
|
220 |
- type: cosine_recall@10
|
221 |
+
value: 0.9911111111111112
|
222 |
name: Cosine Recall@10
|
223 |
- type: cosine_ndcg@10
|
224 |
+
value: 0.938126332642602
|
225 |
name: Cosine Ndcg@10
|
226 |
- type: cosine_mrr@10
|
227 |
+
value: 0.9202962962962962
|
228 |
name: Cosine Mrr@10
|
229 |
- type: cosine_map@100
|
230 |
+
value: 0.9207248677248678
|
231 |
name: Cosine Map@100
|
232 |
- task:
|
233 |
type: information-retrieval
|
|
|
237 |
type: dim_256
|
238 |
metrics:
|
239 |
- type: cosine_accuracy@1
|
240 |
+
value: 0.8755555555555555
|
241 |
name: Cosine Accuracy@1
|
242 |
- type: cosine_accuracy@3
|
243 |
+
value: 0.96
|
244 |
name: Cosine Accuracy@3
|
245 |
- type: cosine_accuracy@5
|
246 |
+
value: 0.9866666666666667
|
247 |
name: Cosine Accuracy@5
|
248 |
- type: cosine_accuracy@10
|
249 |
+
value: 0.9911111111111112
|
250 |
name: Cosine Accuracy@10
|
251 |
- type: cosine_precision@1
|
252 |
+
value: 0.8755555555555555
|
253 |
name: Cosine Precision@1
|
254 |
- type: cosine_precision@3
|
255 |
+
value: 0.32
|
256 |
name: Cosine Precision@3
|
257 |
- type: cosine_precision@5
|
258 |
+
value: 0.19733333333333336
|
259 |
name: Cosine Precision@5
|
260 |
- type: cosine_precision@10
|
261 |
+
value: 0.09911111111111114
|
262 |
name: Cosine Precision@10
|
263 |
- type: cosine_recall@1
|
264 |
+
value: 0.8755555555555555
|
265 |
name: Cosine Recall@1
|
266 |
- type: cosine_recall@3
|
267 |
+
value: 0.96
|
268 |
name: Cosine Recall@3
|
269 |
- type: cosine_recall@5
|
270 |
+
value: 0.9866666666666667
|
271 |
name: Cosine Recall@5
|
272 |
- type: cosine_recall@10
|
273 |
+
value: 0.9911111111111112
|
274 |
name: Cosine Recall@10
|
275 |
- type: cosine_ndcg@10
|
276 |
+
value: 0.9395718726230007
|
277 |
name: Cosine Ndcg@10
|
278 |
- type: cosine_mrr@10
|
279 |
+
value: 0.9222962962962963
|
280 |
name: Cosine Mrr@10
|
281 |
- type: cosine_map@100
|
282 |
+
value: 0.9227724867724867
|
283 |
name: Cosine Map@100
|
284 |
- task:
|
285 |
type: information-retrieval
|
|
|
289 |
type: dim_128
|
290 |
metrics:
|
291 |
- type: cosine_accuracy@1
|
292 |
+
value: 0.8666666666666667
|
293 |
name: Cosine Accuracy@1
|
294 |
- type: cosine_accuracy@3
|
295 |
+
value: 0.9555555555555556
|
296 |
name: Cosine Accuracy@3
|
297 |
- type: cosine_accuracy@5
|
298 |
+
value: 0.9866666666666667
|
299 |
name: Cosine Accuracy@5
|
300 |
- type: cosine_accuracy@10
|
301 |
+
value: 0.9911111111111112
|
302 |
name: Cosine Accuracy@10
|
303 |
- type: cosine_precision@1
|
304 |
+
value: 0.8666666666666667
|
305 |
name: Cosine Precision@1
|
306 |
- type: cosine_precision@3
|
307 |
+
value: 0.3185185185185185
|
308 |
name: Cosine Precision@3
|
309 |
- type: cosine_precision@5
|
310 |
+
value: 0.19733333333333336
|
311 |
name: Cosine Precision@5
|
312 |
- type: cosine_precision@10
|
313 |
+
value: 0.09911111111111114
|
314 |
name: Cosine Precision@10
|
315 |
- type: cosine_recall@1
|
316 |
+
value: 0.8666666666666667
|
317 |
name: Cosine Recall@1
|
318 |
- type: cosine_recall@3
|
319 |
+
value: 0.9555555555555556
|
320 |
name: Cosine Recall@3
|
321 |
- type: cosine_recall@5
|
322 |
+
value: 0.9866666666666667
|
323 |
name: Cosine Recall@5
|
324 |
- type: cosine_recall@10
|
325 |
+
value: 0.9911111111111112
|
326 |
name: Cosine Recall@10
|
327 |
- type: cosine_ndcg@10
|
328 |
+
value: 0.9346269584282435
|
329 |
name: Cosine Ndcg@10
|
330 |
- type: cosine_mrr@10
|
331 |
+
value: 0.9157037037037037
|
332 |
name: Cosine Mrr@10
|
333 |
- type: cosine_map@100
|
334 |
+
value: 0.9160403095943067
|
335 |
name: Cosine Map@100
|
336 |
- task:
|
337 |
type: information-retrieval
|
|
|
341 |
type: dim_64
|
342 |
metrics:
|
343 |
- type: cosine_accuracy@1
|
344 |
+
value: 0.8311111111111111
|
345 |
name: Cosine Accuracy@1
|
346 |
- type: cosine_accuracy@3
|
347 |
+
value: 0.96
|
348 |
name: Cosine Accuracy@3
|
349 |
- type: cosine_accuracy@5
|
350 |
+
value: 0.9733333333333334
|
351 |
name: Cosine Accuracy@5
|
352 |
- type: cosine_accuracy@10
|
353 |
+
value: 0.9911111111111112
|
354 |
name: Cosine Accuracy@10
|
355 |
- type: cosine_precision@1
|
356 |
+
value: 0.8311111111111111
|
357 |
name: Cosine Precision@1
|
358 |
- type: cosine_precision@3
|
359 |
+
value: 0.32
|
360 |
name: Cosine Precision@3
|
361 |
- type: cosine_precision@5
|
362 |
+
value: 0.19466666666666665
|
363 |
name: Cosine Precision@5
|
364 |
- type: cosine_precision@10
|
365 |
+
value: 0.09911111111111114
|
366 |
name: Cosine Precision@10
|
367 |
- type: cosine_recall@1
|
368 |
+
value: 0.8311111111111111
|
369 |
name: Cosine Recall@1
|
370 |
- type: cosine_recall@3
|
371 |
+
value: 0.96
|
372 |
name: Cosine Recall@3
|
373 |
- type: cosine_recall@5
|
374 |
+
value: 0.9733333333333334
|
375 |
name: Cosine Recall@5
|
376 |
- type: cosine_recall@10
|
377 |
+
value: 0.9911111111111112
|
378 |
name: Cosine Recall@10
|
379 |
- type: cosine_ndcg@10
|
380 |
+
value: 0.9208110890988729
|
381 |
name: Cosine Ndcg@10
|
382 |
- type: cosine_mrr@10
|
383 |
+
value: 0.8971957671957672
|
384 |
name: Cosine Mrr@10
|
385 |
- type: cosine_map@100
|
386 |
+
value: 0.8975242479721762
|
387 |
name: Cosine Map@100
|
388 |
---
|
389 |
|
390 |
+
# gte-large-en-v1.5-financial-rag-matryoshka
|
391 |
|
392 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
393 |
|
|
|
436 |
model = SentenceTransformer("rbhatia46/gte-large-en-v1.5-financial-rag-matryoshka")
|
437 |
# Run inference
|
438 |
sentences = [
|
439 |
+
'JP Morgan reported total deposits of $2.6 trillion in the year ending December 31, 2023.',
|
440 |
+
"What were JP Morgan's total deposits in 2023?",
|
441 |
+
'What is the primary source of revenue for the software company, Microsoft?',
|
442 |
]
|
443 |
embeddings = model.encode(sentences)
|
444 |
print(embeddings.shape)
|
|
|
484 |
|
485 |
| Metric | Value |
|
486 |
|:--------------------|:-----------|
|
487 |
+
| cosine_accuracy@1 | 0.88 |
|
488 |
+
| cosine_accuracy@3 | 0.96 |
|
489 |
+
| cosine_accuracy@5 | 0.9867 |
|
490 |
+
| cosine_accuracy@10 | 0.9956 |
|
491 |
+
| cosine_precision@1 | 0.88 |
|
492 |
+
| cosine_precision@3 | 0.32 |
|
493 |
+
| cosine_precision@5 | 0.1973 |
|
494 |
+
| cosine_precision@10 | 0.0996 |
|
495 |
+
| cosine_recall@1 | 0.88 |
|
496 |
+
| cosine_recall@3 | 0.96 |
|
497 |
+
| cosine_recall@5 | 0.9867 |
|
498 |
+
| cosine_recall@10 | 0.9956 |
|
499 |
+
| cosine_ndcg@10 | 0.9427 |
|
500 |
+
| cosine_mrr@10 | 0.9252 |
|
501 |
+
| **cosine_map@100** | **0.9254** |
|
502 |
|
503 |
#### Information Retrieval
|
504 |
* Dataset: `dim_768`
|
|
|
506 |
|
507 |
| Metric | Value |
|
508 |
|:--------------------|:-----------|
|
509 |
+
| cosine_accuracy@1 | 0.88 |
|
510 |
+
| cosine_accuracy@3 | 0.96 |
|
511 |
+
| cosine_accuracy@5 | 0.9867 |
|
512 |
+
| cosine_accuracy@10 | 0.9911 |
|
513 |
+
| cosine_precision@1 | 0.88 |
|
514 |
+
| cosine_precision@3 | 0.32 |
|
515 |
+
| cosine_precision@5 | 0.1973 |
|
516 |
+
| cosine_precision@10 | 0.0991 |
|
517 |
+
| cosine_recall@1 | 0.88 |
|
518 |
+
| cosine_recall@3 | 0.96 |
|
519 |
+
| cosine_recall@5 | 0.9867 |
|
520 |
+
| cosine_recall@10 | 0.9911 |
|
521 |
+
| cosine_ndcg@10 | 0.9408 |
|
522 |
+
| cosine_mrr@10 | 0.924 |
|
523 |
+
| **cosine_map@100** | **0.9245** |
|
524 |
|
525 |
#### Information Retrieval
|
526 |
* Dataset: `dim_512`
|
|
|
528 |
|
529 |
| Metric | Value |
|
530 |
|:--------------------|:-----------|
|
531 |
+
| cosine_accuracy@1 | 0.8711 |
|
532 |
+
| cosine_accuracy@3 | 0.96 |
|
533 |
+
| cosine_accuracy@5 | 0.9867 |
|
534 |
+
| cosine_accuracy@10 | 0.9911 |
|
535 |
+
| cosine_precision@1 | 0.8711 |
|
536 |
+
| cosine_precision@3 | 0.32 |
|
537 |
+
| cosine_precision@5 | 0.1973 |
|
538 |
+
| cosine_precision@10 | 0.0991 |
|
539 |
+
| cosine_recall@1 | 0.8711 |
|
540 |
+
| cosine_recall@3 | 0.96 |
|
541 |
+
| cosine_recall@5 | 0.9867 |
|
542 |
+
| cosine_recall@10 | 0.9911 |
|
543 |
+
| cosine_ndcg@10 | 0.9381 |
|
544 |
+
| cosine_mrr@10 | 0.9203 |
|
545 |
+
| **cosine_map@100** | **0.9207** |
|
546 |
|
547 |
#### Information Retrieval
|
548 |
* Dataset: `dim_256`
|
|
|
550 |
|
551 |
| Metric | Value |
|
552 |
|:--------------------|:-----------|
|
553 |
+
| cosine_accuracy@1 | 0.8756 |
|
554 |
+
| cosine_accuracy@3 | 0.96 |
|
555 |
+
| cosine_accuracy@5 | 0.9867 |
|
556 |
+
| cosine_accuracy@10 | 0.9911 |
|
557 |
+
| cosine_precision@1 | 0.8756 |
|
558 |
+
| cosine_precision@3 | 0.32 |
|
559 |
+
| cosine_precision@5 | 0.1973 |
|
560 |
| cosine_precision@10 | 0.0991 |
|
561 |
+
| cosine_recall@1 | 0.8756 |
|
562 |
+
| cosine_recall@3 | 0.96 |
|
563 |
+
| cosine_recall@5 | 0.9867 |
|
564 |
+
| cosine_recall@10 | 0.9911 |
|
565 |
+
| cosine_ndcg@10 | 0.9396 |
|
566 |
+
| cosine_mrr@10 | 0.9223 |
|
567 |
+
| **cosine_map@100** | **0.9228** |
|
568 |
|
569 |
#### Information Retrieval
|
570 |
* Dataset: `dim_128`
|
571 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
572 |
|
573 |
+
| Metric | Value |
|
574 |
+
|:--------------------|:----------|
|
575 |
+
| cosine_accuracy@1 | 0.8667 |
|
576 |
+
| cosine_accuracy@3 | 0.9556 |
|
577 |
+
| cosine_accuracy@5 | 0.9867 |
|
578 |
+
| cosine_accuracy@10 | 0.9911 |
|
579 |
+
| cosine_precision@1 | 0.8667 |
|
580 |
+
| cosine_precision@3 | 0.3185 |
|
581 |
+
| cosine_precision@5 | 0.1973 |
|
582 |
+
| cosine_precision@10 | 0.0991 |
|
583 |
+
| cosine_recall@1 | 0.8667 |
|
584 |
+
| cosine_recall@3 | 0.9556 |
|
585 |
+
| cosine_recall@5 | 0.9867 |
|
586 |
+
| cosine_recall@10 | 0.9911 |
|
587 |
+
| cosine_ndcg@10 | 0.9346 |
|
588 |
+
| cosine_mrr@10 | 0.9157 |
|
589 |
+
| **cosine_map@100** | **0.916** |
|
590 |
|
591 |
#### Information Retrieval
|
592 |
* Dataset: `dim_64`
|
593 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
594 |
|
595 |
+
| Metric | Value |
|
596 |
+
|:--------------------|:-----------|
|
597 |
+
| cosine_accuracy@1 | 0.8311 |
|
598 |
+
| cosine_accuracy@3 | 0.96 |
|
599 |
+
| cosine_accuracy@5 | 0.9733 |
|
600 |
+
| cosine_accuracy@10 | 0.9911 |
|
601 |
+
| cosine_precision@1 | 0.8311 |
|
602 |
+
| cosine_precision@3 | 0.32 |
|
603 |
+
| cosine_precision@5 | 0.1947 |
|
604 |
+
| cosine_precision@10 | 0.0991 |
|
605 |
+
| cosine_recall@1 | 0.8311 |
|
606 |
+
| cosine_recall@3 | 0.96 |
|
607 |
+
| cosine_recall@5 | 0.9733 |
|
608 |
+
| cosine_recall@10 | 0.9911 |
|
609 |
+
| cosine_ndcg@10 | 0.9208 |
|
610 |
+
| cosine_mrr@10 | 0.8972 |
|
611 |
+
| **cosine_map@100** | **0.8975** |
|
612 |
|
613 |
<!--
|
614 |
## Bias, Risks and Limitations
|
|
|
629 |
#### Unnamed Dataset
|
630 |
|
631 |
|
632 |
+
* Size: 4,275 training samples
|
633 |
* Columns: <code>positive</code> and <code>anchor</code>
|
634 |
* Approximate statistics based on the first 1000 samples:
|
635 |
| | positive | anchor |
|
636 |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
637 |
| type | string | string |
|
638 |
+
| details | <ul><li>min: 15 tokens</li><li>mean: 44.74 tokens</li><li>max: 114 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 18.12 tokens</li><li>max: 32 tokens</li></ul> |
|
639 |
* Samples:
|
640 |
+
| positive | anchor |
|
641 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
|
642 |
+
| <code>At the end of fiscal year 2023, Exxon Mobil reported a debt-to-equity ratio of 0.32, implying that the company used more equity than debt in its capital structure.</code> | <code>What was the debt-to-equity ratio for Exxon Mobil at the end of fiscal year 2023?</code> |
|
643 |
+
| <code>Amazon Web Services (AWS) generated $12.7 billion in net sales in the fourth quarter of 2020, up 28% from the same period of the previous year. It accounted for about 10% of Amazon’s total net sales for the quarter.</code> | <code>How did Amazon's AWS segment perform in the fourth quarter of 2020?</code> |
|
644 |
+
| <code>JPMorgan Chase generates revenues by providing a wide range of banking and financial services. These include investment banking (M&As, advisory), consumer and community banking (home mortgages, auto loans), commercial banking, and asset and wealth management.</code> | <code>What are the key revenue sources for JPMorgan Chase?</code> |
|
645 |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
646 |
```json
|
647 |
{
|
|
|
674 |
- `per_device_eval_batch_size`: 16
|
675 |
- `gradient_accumulation_steps`: 16
|
676 |
- `learning_rate`: 2e-05
|
677 |
+
- `num_train_epochs`: 10
|
678 |
- `lr_scheduler_type`: cosine
|
679 |
- `warmup_ratio`: 0.1
|
680 |
- `bf16`: True
|
|
|
702 |
- `adam_beta2`: 0.999
|
703 |
- `adam_epsilon`: 1e-08
|
704 |
- `max_grad_norm`: 1.0
|
705 |
+
- `num_train_epochs`: 10
|
706 |
- `max_steps`: -1
|
707 |
- `lr_scheduler_type`: cosine
|
708 |
- `lr_scheduler_kwargs`: {}
|
|
|
800 |
### Training Logs
|
801 |
| Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|
802 |
|:-------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
|
803 |
+
| 0.9552 | 8 | - | 0.9090 | 0.8848 | 0.8992 | 0.9052 | 0.8775 | 0.9030 |
|
804 |
+
| 1.1940 | 10 | 0.4749 | - | - | - | - | - | - |
|
805 |
+
| 1.9104 | 16 | - | 0.9170 | 0.9095 | 0.9109 | 0.9201 | 0.8961 | 0.9212 |
|
806 |
+
| 2.3881 | 20 | 0.0862 | - | - | - | - | - | - |
|
807 |
+
| 2.9851 | 25 | - | 0.9190 | 0.9071 | 0.9160 | 0.9278 | 0.8998 | 0.9234 |
|
808 |
+
| 3.5821 | 30 | 0.0315 | - | - | - | - | - | - |
|
809 |
+
| 3.9403 | 33 | - | 0.9183 | 0.9053 | 0.9122 | 0.9287 | 0.8998 | 0.9183 |
|
810 |
+
| 4.7761 | 40 | 0.0184 | - | - | - | - | - | - |
|
811 |
+
| 4.8955 | 41 | - | 0.9225 | 0.9125 | 0.9164 | 0.9260 | 0.8985 | 0.9220 |
|
812 |
+
| 5.9701 | 50 | 0.0135 | 0.9268 | 0.9132 | 0.9208 | 0.9257 | 0.8961 | 0.9271 |
|
813 |
+
| 6.9254 | 58 | - | 0.9254 | 0.9158 | 0.9202 | 0.9212 | 0.8938 | 0.9213 |
|
814 |
+
| 7.1642 | 60 | 0.0123 | - | - | - | - | - | - |
|
815 |
+
| **8.0** | **67** | **-** | **0.9253** | **0.916** | **0.9228** | **0.9207** | **0.8972** | **0.9243** |
|
816 |
+
| 8.3582 | 70 | 0.01 | - | - | - | - | - | - |
|
817 |
+
| 8.9552 | 75 | - | 0.9254 | 0.9160 | 0.9213 | 0.9207 | 0.9005 | 0.9245 |
|
818 |
+
| 9.5522 | 80 | 0.0088 | 0.9254 | 0.9160 | 0.9228 | 0.9207 | 0.8975 | 0.9245 |
|
819 |
|
820 |
* The bold row denotes the saved checkpoint.
|
821 |
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1736585680
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8ea20cd7be4fdac5063bfc2b9a9b8d2cb4437a36c5697f43a0f9a2f6326bfc1
|
3 |
size 1736585680
|