rbhatia46 commited on
Commit
ea225a1
1 Parent(s): e6ec22e

Add new SentenceTransformer model.

Browse files
Files changed (2) hide show
  1. README.md +248 -239
  2. model.safetensors +1 -1
README.md CHANGED
@@ -27,52 +27,51 @@ tags:
27
  - sentence-similarity
28
  - feature-extraction
29
  - generated_from_trainer
30
- - dataset_size:3051
31
  - loss:MatryoshkaLoss
32
  - loss:MultipleNegativesRankingLoss
33
  widget:
34
- - source_sentence: In the fiscal year of 2022, revenue in Productivity and Business
35
- Processes was $53.5 billion, increasing 15%. The increase was driven by higher
36
- revenue from LinkedIn, Office 366 commercial and Dynamics 365.
 
37
  sentences:
38
- - Who is the CEO of Berkshire Hathaway and how long have they been in the position?
39
- - How does Microsoft's Office segment contribute to its overall revenue?
40
- - What is the primary revenue stream for McDonald's?
41
- - source_sentence: According to the Cisco Systems, Inc. financial reports, the company
42
- had cash and cash equivalents worth $30.1 billion at the end of fiscal year 2023.
 
43
  sentences:
44
- - How much cash and cash equivalents did Cisco Systems, Inc. hold at the end of
45
- fiscal year 2023?
46
- - In 2023, how much capital expenditure was done by Microsoft in the Information
47
- Technology services sector?
48
- - In 2023, how has the acquisition of ABC Corp affected the financial performance
49
- of Microsoft corporation?
50
- - source_sentence: As of December 31, 2023, Bank of America had total loans and leases
51
- in its consumer real estate portfolio amounting to approximately $262 billion.
52
  sentences:
53
- - How many total loans were there in Bank of America's consumer real estate portfolio
54
- as of December 31, 2023?
55
- - How did Johnson & Johnson’s pharmaceutical segment perform in the fiscal year
56
- 2023?
57
- - What is the source of most of Amazon's revenue in 2023?
58
- - source_sentence: The ongoing trade war between US and China has negatively impacted
59
- the performance of Microsoft stock, with a decline of around 7.5% observed in
60
- the last quarter.
 
61
  sentences:
62
- - What was the profit margin for Amazon in 2025?
63
- - What was the growth rate in the consumer sector for Amazon in 2023?
64
- - How has the ongoing trade war between US and China affected the performance of
65
- the Microsoft stock in the past quarter?
66
- - source_sentence: For the fiscal year ending June 30, 2023, Procter & Gamble Company
67
- reported a dividend payout ratio of 60%.
68
  sentences:
69
- - What was the impact of the housing market on Wells Fargo's mortgage banking income
70
- in 2023?
71
- - What was the dividend payout ratio of Procter & Gamble Company for the fiscal
72
- year ended 2023?
73
- - What prompted Tesla's stock to surge in 2020?
74
  model-index:
75
- - name: gte-large-en-v1.5-financial-embeddings-matryoshka
76
  results:
77
  - task:
78
  type: information-retrieval
@@ -82,49 +81,49 @@ model-index:
82
  type: dim_1024
83
  metrics:
84
  - type: cosine_accuracy@1
85
- value: 0.8436578171091446
86
  name: Cosine Accuracy@1
87
  - type: cosine_accuracy@3
88
- value: 0.967551622418879
89
  name: Cosine Accuracy@3
90
  - type: cosine_accuracy@5
91
- value: 0.9793510324483776
92
  name: Cosine Accuracy@5
93
  - type: cosine_accuracy@10
94
- value: 0.9941002949852508
95
  name: Cosine Accuracy@10
96
  - type: cosine_precision@1
97
- value: 0.8436578171091446
98
  name: Cosine Precision@1
99
  - type: cosine_precision@3
100
- value: 0.32251720747295964
101
  name: Cosine Precision@3
102
  - type: cosine_precision@5
103
- value: 0.19587020648967549
104
  name: Cosine Precision@5
105
  - type: cosine_precision@10
106
- value: 0.09941002949852507
107
  name: Cosine Precision@10
108
  - type: cosine_recall@1
109
- value: 0.8436578171091446
110
  name: Cosine Recall@1
111
  - type: cosine_recall@3
112
- value: 0.967551622418879
113
  name: Cosine Recall@3
114
  - type: cosine_recall@5
115
- value: 0.9793510324483776
116
  name: Cosine Recall@5
117
  - type: cosine_recall@10
118
- value: 0.9941002949852508
119
  name: Cosine Recall@10
120
  - type: cosine_ndcg@10
121
- value: 0.9266864251220158
122
  name: Cosine Ndcg@10
123
  - type: cosine_mrr@10
124
- value: 0.9042480217258979
125
  name: Cosine Mrr@10
126
  - type: cosine_map@100
127
- value: 0.9045732618741468
128
  name: Cosine Map@100
129
  - task:
130
  type: information-retrieval
@@ -134,49 +133,49 @@ model-index:
134
  type: dim_768
135
  metrics:
136
  - type: cosine_accuracy@1
137
- value: 0.8466076696165191
138
  name: Cosine Accuracy@1
139
  - type: cosine_accuracy@3
140
- value: 0.9646017699115044
141
  name: Cosine Accuracy@3
142
  - type: cosine_accuracy@5
143
- value: 0.9793510324483776
144
  name: Cosine Accuracy@5
145
  - type: cosine_accuracy@10
146
- value: 0.9941002949852508
147
  name: Cosine Accuracy@10
148
  - type: cosine_precision@1
149
- value: 0.8466076696165191
150
  name: Cosine Precision@1
151
  - type: cosine_precision@3
152
- value: 0.3215339233038348
153
  name: Cosine Precision@3
154
  - type: cosine_precision@5
155
- value: 0.19587020648967549
156
  name: Cosine Precision@5
157
  - type: cosine_precision@10
158
- value: 0.09941002949852507
159
  name: Cosine Precision@10
160
  - type: cosine_recall@1
161
- value: 0.8466076696165191
162
  name: Cosine Recall@1
163
  - type: cosine_recall@3
164
- value: 0.9646017699115044
165
  name: Cosine Recall@3
166
  - type: cosine_recall@5
167
- value: 0.9793510324483776
168
  name: Cosine Recall@5
169
  - type: cosine_recall@10
170
- value: 0.9941002949852508
171
  name: Cosine Recall@10
172
  - type: cosine_ndcg@10
173
- value: 0.9264205608498619
174
  name: Cosine Ndcg@10
175
  - type: cosine_mrr@10
176
- value: 0.9039893243433065
177
  name: Cosine Mrr@10
178
  - type: cosine_map@100
179
- value: 0.9043029964425071
180
  name: Cosine Map@100
181
  - task:
182
  type: information-retrieval
@@ -186,49 +185,49 @@ model-index:
186
  type: dim_512
187
  metrics:
188
  - type: cosine_accuracy@1
189
- value: 0.8495575221238938
190
  name: Cosine Accuracy@1
191
  - type: cosine_accuracy@3
192
- value: 0.967551622418879
193
  name: Cosine Accuracy@3
194
  - type: cosine_accuracy@5
195
- value: 0.9823008849557522
196
  name: Cosine Accuracy@5
197
  - type: cosine_accuracy@10
198
- value: 0.9941002949852508
199
  name: Cosine Accuracy@10
200
  - type: cosine_precision@1
201
- value: 0.8495575221238938
202
  name: Cosine Precision@1
203
  - type: cosine_precision@3
204
- value: 0.3225172074729597
205
  name: Cosine Precision@3
206
  - type: cosine_precision@5
207
- value: 0.19646017699115043
208
  name: Cosine Precision@5
209
  - type: cosine_precision@10
210
- value: 0.09941002949852507
211
  name: Cosine Precision@10
212
  - type: cosine_recall@1
213
- value: 0.8495575221238938
214
  name: Cosine Recall@1
215
  - type: cosine_recall@3
216
- value: 0.967551622418879
217
  name: Cosine Recall@3
218
  - type: cosine_recall@5
219
- value: 0.9823008849557522
220
  name: Cosine Recall@5
221
  - type: cosine_recall@10
222
- value: 0.9941002949852508
223
  name: Cosine Recall@10
224
  - type: cosine_ndcg@10
225
- value: 0.9284195153657646
226
  name: Cosine Ndcg@10
227
  - type: cosine_mrr@10
228
- value: 0.9066207800721073
229
  name: Cosine Mrr@10
230
  - type: cosine_map@100
231
- value: 0.9069134241700614
232
  name: Cosine Map@100
233
  - task:
234
  type: information-retrieval
@@ -238,49 +237,49 @@ model-index:
238
  type: dim_256
239
  metrics:
240
  - type: cosine_accuracy@1
241
- value: 0.8495575221238938
242
  name: Cosine Accuracy@1
243
  - type: cosine_accuracy@3
244
- value: 0.9646017699115044
245
  name: Cosine Accuracy@3
246
  - type: cosine_accuracy@5
247
- value: 0.9823008849557522
248
  name: Cosine Accuracy@5
249
  - type: cosine_accuracy@10
250
- value: 0.9911504424778761
251
  name: Cosine Accuracy@10
252
  - type: cosine_precision@1
253
- value: 0.8495575221238938
254
  name: Cosine Precision@1
255
  - type: cosine_precision@3
256
- value: 0.3215339233038348
257
  name: Cosine Precision@3
258
  - type: cosine_precision@5
259
- value: 0.19646017699115043
260
  name: Cosine Precision@5
261
  - type: cosine_precision@10
262
- value: 0.0991150442477876
263
  name: Cosine Precision@10
264
  - type: cosine_recall@1
265
- value: 0.8495575221238938
266
  name: Cosine Recall@1
267
  - type: cosine_recall@3
268
- value: 0.9646017699115044
269
  name: Cosine Recall@3
270
  - type: cosine_recall@5
271
- value: 0.9823008849557522
272
  name: Cosine Recall@5
273
  - type: cosine_recall@10
274
- value: 0.9911504424778761
275
  name: Cosine Recall@10
276
  - type: cosine_ndcg@10
277
- value: 0.9279790172476607
278
  name: Cosine Ndcg@10
279
  - type: cosine_mrr@10
280
- value: 0.906915765322845
281
  name: Cosine Mrr@10
282
  - type: cosine_map@100
283
- value: 0.907374745870321
284
  name: Cosine Map@100
285
  - task:
286
  type: information-retrieval
@@ -290,49 +289,49 @@ model-index:
290
  type: dim_128
291
  metrics:
292
  - type: cosine_accuracy@1
293
- value: 0.8348082595870207
294
  name: Cosine Accuracy@1
295
  - type: cosine_accuracy@3
296
- value: 0.9616519174041298
297
  name: Cosine Accuracy@3
298
  - type: cosine_accuracy@5
299
- value: 0.976401179941003
300
  name: Cosine Accuracy@5
301
  - type: cosine_accuracy@10
302
- value: 0.9852507374631269
303
  name: Cosine Accuracy@10
304
  - type: cosine_precision@1
305
- value: 0.8348082595870207
306
  name: Cosine Precision@1
307
  - type: cosine_precision@3
308
- value: 0.3205506391347099
309
  name: Cosine Precision@3
310
  - type: cosine_precision@5
311
- value: 0.19528023598820055
312
  name: Cosine Precision@5
313
  - type: cosine_precision@10
314
- value: 0.09852507374631266
315
  name: Cosine Precision@10
316
  - type: cosine_recall@1
317
- value: 0.8348082595870207
318
  name: Cosine Recall@1
319
  - type: cosine_recall@3
320
- value: 0.9616519174041298
321
  name: Cosine Recall@3
322
  - type: cosine_recall@5
323
- value: 0.976401179941003
324
  name: Cosine Recall@5
325
  - type: cosine_recall@10
326
- value: 0.9852507374631269
327
  name: Cosine Recall@10
328
  - type: cosine_ndcg@10
329
- value: 0.9195345068147046
330
  name: Cosine Ndcg@10
331
  - type: cosine_mrr@10
332
- value: 0.8974551669241934
333
  name: Cosine Mrr@10
334
  - type: cosine_map@100
335
- value: 0.898503034985336
336
  name: Cosine Map@100
337
  - task:
338
  type: information-retrieval
@@ -342,53 +341,53 @@ model-index:
342
  type: dim_64
343
  metrics:
344
  - type: cosine_accuracy@1
345
- value: 0.8259587020648967
346
  name: Cosine Accuracy@1
347
  - type: cosine_accuracy@3
348
- value: 0.9587020648967551
349
  name: Cosine Accuracy@3
350
  - type: cosine_accuracy@5
351
- value: 0.976401179941003
352
  name: Cosine Accuracy@5
353
  - type: cosine_accuracy@10
354
- value: 0.9852507374631269
355
  name: Cosine Accuracy@10
356
  - type: cosine_precision@1
357
- value: 0.8259587020648967
358
  name: Cosine Precision@1
359
  - type: cosine_precision@3
360
- value: 0.319567354965585
361
  name: Cosine Precision@3
362
  - type: cosine_precision@5
363
- value: 0.19528023598820055
364
  name: Cosine Precision@5
365
  - type: cosine_precision@10
366
- value: 0.09852507374631266
367
  name: Cosine Precision@10
368
  - type: cosine_recall@1
369
- value: 0.8259587020648967
370
  name: Cosine Recall@1
371
  - type: cosine_recall@3
372
- value: 0.9587020648967551
373
  name: Cosine Recall@3
374
  - type: cosine_recall@5
375
- value: 0.976401179941003
376
  name: Cosine Recall@5
377
  - type: cosine_recall@10
378
- value: 0.9852507374631269
379
  name: Cosine Recall@10
380
  - type: cosine_ndcg@10
381
- value: 0.9154633119580834
382
  name: Cosine Ndcg@10
383
  - type: cosine_mrr@10
384
- value: 0.8919897457508078
385
  name: Cosine Mrr@10
386
  - type: cosine_map@100
387
- value: 0.8929899218270423
388
  name: Cosine Map@100
389
  ---
390
 
391
- # gte-large-en-v1.5-financial-embeddings-matryoshka
392
 
393
  This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
394
 
@@ -437,9 +436,9 @@ from sentence_transformers import SentenceTransformer
437
  model = SentenceTransformer("rbhatia46/gte-large-en-v1.5-financial-rag-matryoshka")
438
  # Run inference
439
  sentences = [
440
- 'For the fiscal year ending June 30, 2023, Procter & Gamble Company reported a dividend payout ratio of 60%.',
441
- 'What was the dividend payout ratio of Procter & Gamble Company for the fiscal year ended 2023?',
442
- "What prompted Tesla's stock to surge in 2020?",
443
  ]
444
  embeddings = model.encode(sentences)
445
  print(embeddings.shape)
@@ -485,21 +484,21 @@ You can finetune this model on your own dataset.
485
 
486
  | Metric | Value |
487
  |:--------------------|:-----------|
488
- | cosine_accuracy@1 | 0.8437 |
489
- | cosine_accuracy@3 | 0.9676 |
490
- | cosine_accuracy@5 | 0.9794 |
491
- | cosine_accuracy@10 | 0.9941 |
492
- | cosine_precision@1 | 0.8437 |
493
- | cosine_precision@3 | 0.3225 |
494
- | cosine_precision@5 | 0.1959 |
495
- | cosine_precision@10 | 0.0994 |
496
- | cosine_recall@1 | 0.8437 |
497
- | cosine_recall@3 | 0.9676 |
498
- | cosine_recall@5 | 0.9794 |
499
- | cosine_recall@10 | 0.9941 |
500
- | cosine_ndcg@10 | 0.9267 |
501
- | cosine_mrr@10 | 0.9042 |
502
- | **cosine_map@100** | **0.9046** |
503
 
504
  #### Information Retrieval
505
  * Dataset: `dim_768`
@@ -507,21 +506,21 @@ You can finetune this model on your own dataset.
507
 
508
  | Metric | Value |
509
  |:--------------------|:-----------|
510
- | cosine_accuracy@1 | 0.8466 |
511
- | cosine_accuracy@3 | 0.9646 |
512
- | cosine_accuracy@5 | 0.9794 |
513
- | cosine_accuracy@10 | 0.9941 |
514
- | cosine_precision@1 | 0.8466 |
515
- | cosine_precision@3 | 0.3215 |
516
- | cosine_precision@5 | 0.1959 |
517
- | cosine_precision@10 | 0.0994 |
518
- | cosine_recall@1 | 0.8466 |
519
- | cosine_recall@3 | 0.9646 |
520
- | cosine_recall@5 | 0.9794 |
521
- | cosine_recall@10 | 0.9941 |
522
- | cosine_ndcg@10 | 0.9264 |
523
- | cosine_mrr@10 | 0.904 |
524
- | **cosine_map@100** | **0.9043** |
525
 
526
  #### Information Retrieval
527
  * Dataset: `dim_512`
@@ -529,21 +528,21 @@ You can finetune this model on your own dataset.
529
 
530
  | Metric | Value |
531
  |:--------------------|:-----------|
532
- | cosine_accuracy@1 | 0.8496 |
533
- | cosine_accuracy@3 | 0.9676 |
534
- | cosine_accuracy@5 | 0.9823 |
535
- | cosine_accuracy@10 | 0.9941 |
536
- | cosine_precision@1 | 0.8496 |
537
- | cosine_precision@3 | 0.3225 |
538
- | cosine_precision@5 | 0.1965 |
539
- | cosine_precision@10 | 0.0994 |
540
- | cosine_recall@1 | 0.8496 |
541
- | cosine_recall@3 | 0.9676 |
542
- | cosine_recall@5 | 0.9823 |
543
- | cosine_recall@10 | 0.9941 |
544
- | cosine_ndcg@10 | 0.9284 |
545
- | cosine_mrr@10 | 0.9066 |
546
- | **cosine_map@100** | **0.9069** |
547
 
548
  #### Information Retrieval
549
  * Dataset: `dim_256`
@@ -551,65 +550,65 @@ You can finetune this model on your own dataset.
551
 
552
  | Metric | Value |
553
  |:--------------------|:-----------|
554
- | cosine_accuracy@1 | 0.8496 |
555
- | cosine_accuracy@3 | 0.9646 |
556
- | cosine_accuracy@5 | 0.9823 |
557
- | cosine_accuracy@10 | 0.9912 |
558
- | cosine_precision@1 | 0.8496 |
559
- | cosine_precision@3 | 0.3215 |
560
- | cosine_precision@5 | 0.1965 |
561
  | cosine_precision@10 | 0.0991 |
562
- | cosine_recall@1 | 0.8496 |
563
- | cosine_recall@3 | 0.9646 |
564
- | cosine_recall@5 | 0.9823 |
565
- | cosine_recall@10 | 0.9912 |
566
- | cosine_ndcg@10 | 0.928 |
567
- | cosine_mrr@10 | 0.9069 |
568
- | **cosine_map@100** | **0.9074** |
569
 
570
  #### Information Retrieval
571
  * Dataset: `dim_128`
572
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
573
 
574
- | Metric | Value |
575
- |:--------------------|:-----------|
576
- | cosine_accuracy@1 | 0.8348 |
577
- | cosine_accuracy@3 | 0.9617 |
578
- | cosine_accuracy@5 | 0.9764 |
579
- | cosine_accuracy@10 | 0.9853 |
580
- | cosine_precision@1 | 0.8348 |
581
- | cosine_precision@3 | 0.3206 |
582
- | cosine_precision@5 | 0.1953 |
583
- | cosine_precision@10 | 0.0985 |
584
- | cosine_recall@1 | 0.8348 |
585
- | cosine_recall@3 | 0.9617 |
586
- | cosine_recall@5 | 0.9764 |
587
- | cosine_recall@10 | 0.9853 |
588
- | cosine_ndcg@10 | 0.9195 |
589
- | cosine_mrr@10 | 0.8975 |
590
- | **cosine_map@100** | **0.8985** |
591
 
592
  #### Information Retrieval
593
  * Dataset: `dim_64`
594
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
595
 
596
- | Metric | Value |
597
- |:--------------------|:----------|
598
- | cosine_accuracy@1 | 0.826 |
599
- | cosine_accuracy@3 | 0.9587 |
600
- | cosine_accuracy@5 | 0.9764 |
601
- | cosine_accuracy@10 | 0.9853 |
602
- | cosine_precision@1 | 0.826 |
603
- | cosine_precision@3 | 0.3196 |
604
- | cosine_precision@5 | 0.1953 |
605
- | cosine_precision@10 | 0.0985 |
606
- | cosine_recall@1 | 0.826 |
607
- | cosine_recall@3 | 0.9587 |
608
- | cosine_recall@5 | 0.9764 |
609
- | cosine_recall@10 | 0.9853 |
610
- | cosine_ndcg@10 | 0.9155 |
611
- | cosine_mrr@10 | 0.892 |
612
- | **cosine_map@100** | **0.893** |
613
 
614
  <!--
615
  ## Bias, Risks and Limitations
@@ -630,19 +629,19 @@ You can finetune this model on your own dataset.
630
  #### Unnamed Dataset
631
 
632
 
633
- * Size: 3,051 training samples
634
  * Columns: <code>positive</code> and <code>anchor</code>
635
  * Approximate statistics based on the first 1000 samples:
636
  | | positive | anchor |
637
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
638
  | type | string | string |
639
- | details | <ul><li>min: 15 tokens</li><li>mean: 44.56 tokens</li><li>max: 116 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 18.23 tokens</li><li>max: 32 tokens</li></ul> |
640
  * Samples:
641
- | positive | anchor |
642
- |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
643
- | <code>Amazon had a strong Q1 in 2021, with net sales increasing 44% to $108.5 billion in the first quarter, compared with $75.5 billion in first quarter 2020. Operating income increased to $8.9 billion in the first quarter, compared with operating income of $4.0 billion in first quarter 2020.</code> | <code>What were the key findings of Amazon's Q1 financial report for 2021?</code> |
644
- | <code>Apple Inc. reported total revenue of $102.4 billion for the second quarter of fiscal 2023, up 22% from the same quarter in the previous year. This has been attributed to increased sales of iPhones, iPads, and other hardware products as well as the expansion of their services business.</code> | <code>What was the revenue of Apple Inc. in 2023?</code> |
645
- | <code>JPMorgan Chase & Co. was formed through the merger of Chase Manhattan Corporation and J.P. Morgan & Co. The origins of the company can be traced back to the founding of The Manhattan Company by Aaron Burr in 1799.</code> | <code>Who founded JPMorgan Chase & Co.?</code> |
646
  * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
647
  ```json
648
  {
@@ -675,7 +674,7 @@ You can finetune this model on your own dataset.
675
  - `per_device_eval_batch_size`: 16
676
  - `gradient_accumulation_steps`: 16
677
  - `learning_rate`: 2e-05
678
- - `num_train_epochs`: 4
679
  - `lr_scheduler_type`: cosine
680
  - `warmup_ratio`: 0.1
681
  - `bf16`: True
@@ -703,7 +702,7 @@ You can finetune this model on your own dataset.
703
  - `adam_beta2`: 0.999
704
  - `adam_epsilon`: 1e-08
705
  - `max_grad_norm`: 1.0
706
- - `num_train_epochs`: 4
707
  - `max_steps`: -1
708
  - `lr_scheduler_type`: cosine
709
  - `lr_scheduler_kwargs`: {}
@@ -801,12 +800,22 @@ You can finetune this model on your own dataset.
801
  ### Training Logs
802
  | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
803
  |:-------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
804
- | 1.0 | 6 | - | 0.9015 | 0.8932 | 0.9017 | 0.8958 | 0.8925 | 0.8935 |
805
- | 1.6667 | 10 | 0.3905 | - | - | - | - | - | - |
806
- | **2.0** | **12** | **-** | **0.9038** | **0.901** | **0.9018** | **0.909** | **0.8903** | **0.9039** |
807
- | 3.0 | 18 | - | 0.9046 | 0.8982 | 0.9065 | 0.9055 | 0.8916 | 0.9033 |
808
- | 3.3333 | 20 | 0.0493 | - | - | - | - | - | - |
809
- | 4.0 | 24 | - | 0.9046 | 0.8985 | 0.9074 | 0.9069 | 0.8930 | 0.9043 |
 
 
 
 
 
 
 
 
 
 
810
 
811
  * The bold row denotes the saved checkpoint.
812
 
 
27
  - sentence-similarity
28
  - feature-extraction
29
  - generated_from_trainer
30
+ - dataset_size:4275
31
  - loss:MatryoshkaLoss
32
  - loss:MultipleNegativesRankingLoss
33
  widget:
34
+ - source_sentence: The fundamental elements of Goldman Sachs’ robust risk culture
35
+ include governance, risk identification, measurement, mitigation, culture and
36
+ conduct, and infrastructure. They believe these elements work together to complement
37
+ and reinforce each other to produce a comprehensive view of risk management.
38
  sentences:
39
+ - What are the financial highlights for Bank of America Corp. in its latest fiscal
40
+ year report?
41
+ - What is Berkshire Hathaway's involvement in the energy sector?
42
+ - What is Goldman Sach’s approach towards maintaining a robust risk culture?
43
+ - source_sentence: HealthTech Inc.'s new drug for diabetes treatment, launched in
44
+ 2021, contributed to approximately 30% of its total revenues for that year.
45
  sentences:
46
+ - What is IBM's debt to equity ratio as of 2022?
47
+ - In what way does HealthTech Inc's new drug contribute to its revenue generation?
48
+ - What is the revenue breakdown of Alphabet for the year 2021?
49
+ - source_sentence: The driving factor behind Tesla’s 2023 growth was the surge in
50
+ demand for electric vehicles.
 
 
 
51
  sentences:
52
+ - Why did McDonald's observe a decrease in overall revenue in 2023 relative to 2022?
53
+ - What key strategy did Walmart employ to boost its sales in 2016?
54
+ - What was the driving factor behind Tesla's growth in 2023?
55
+ - source_sentence: Pfizer is committed to ensuring that people around the world have
56
+ access to its medical products. In line with this commitment, Pfizer has implemented
57
+ programs such as donation drives, price reduction initiatives, and patient assistance
58
+ programs to aid those in need. Furthermore, through partnerships with NGOs and
59
+ governments, Pfizer strives to strengthen healthcare systems in underprivileged
60
+ regions.
61
  sentences:
62
+ - What is the strategy of Pfizer to improve access to medicines in underprivileged
63
+ areas?
64
+ - What percentage of growth in revenue did Adobe Systems report in June 2020?
65
+ - How is Citigroup differentiating itself among other banks?
66
+ - source_sentence: JP Morgan reported total deposits of $2.6 trillion in the year
67
+ ending December 31, 2023.
68
  sentences:
69
+ - In the fiscal year 2023, what impact did the acquisition of T-Mobile bring to
70
+ the revenue of AT&T?
71
+ - What is the primary source of revenue for the software company, Microsoft?
72
+ - What were JP Morgan's total deposits in 2023?
 
73
  model-index:
74
+ - name: gte-large-en-v1.5-financial-rag-matryoshka
75
  results:
76
  - task:
77
  type: information-retrieval
 
81
  type: dim_1024
82
  metrics:
83
  - type: cosine_accuracy@1
84
+ value: 0.88
85
  name: Cosine Accuracy@1
86
  - type: cosine_accuracy@3
87
+ value: 0.96
88
  name: Cosine Accuracy@3
89
  - type: cosine_accuracy@5
90
+ value: 0.9866666666666667
91
  name: Cosine Accuracy@5
92
  - type: cosine_accuracy@10
93
+ value: 0.9955555555555555
94
  name: Cosine Accuracy@10
95
  - type: cosine_precision@1
96
+ value: 0.88
97
  name: Cosine Precision@1
98
  - type: cosine_precision@3
99
+ value: 0.32
100
  name: Cosine Precision@3
101
  - type: cosine_precision@5
102
+ value: 0.19733333333333336
103
  name: Cosine Precision@5
104
  - type: cosine_precision@10
105
+ value: 0.09955555555555556
106
  name: Cosine Precision@10
107
  - type: cosine_recall@1
108
+ value: 0.88
109
  name: Cosine Recall@1
110
  - type: cosine_recall@3
111
+ value: 0.96
112
  name: Cosine Recall@3
113
  - type: cosine_recall@5
114
+ value: 0.9866666666666667
115
  name: Cosine Recall@5
116
  - type: cosine_recall@10
117
+ value: 0.9955555555555555
118
  name: Cosine Recall@10
119
  - type: cosine_ndcg@10
120
+ value: 0.9426916896167131
121
  name: Cosine Ndcg@10
122
  - type: cosine_mrr@10
123
+ value: 0.9251851851851851
124
  name: Cosine Mrr@10
125
  - type: cosine_map@100
126
+ value: 0.925362962962963
127
  name: Cosine Map@100
128
  - task:
129
  type: information-retrieval
 
133
  type: dim_768
134
  metrics:
135
  - type: cosine_accuracy@1
136
+ value: 0.88
137
  name: Cosine Accuracy@1
138
  - type: cosine_accuracy@3
139
+ value: 0.96
140
  name: Cosine Accuracy@3
141
  - type: cosine_accuracy@5
142
+ value: 0.9866666666666667
143
  name: Cosine Accuracy@5
144
  - type: cosine_accuracy@10
145
+ value: 0.9911111111111112
146
  name: Cosine Accuracy@10
147
  - type: cosine_precision@1
148
+ value: 0.88
149
  name: Cosine Precision@1
150
  - type: cosine_precision@3
151
+ value: 0.32
152
  name: Cosine Precision@3
153
  - type: cosine_precision@5
154
+ value: 0.19733333333333336
155
  name: Cosine Precision@5
156
  - type: cosine_precision@10
157
+ value: 0.09911111111111114
158
  name: Cosine Precision@10
159
  - type: cosine_recall@1
160
+ value: 0.88
161
  name: Cosine Recall@1
162
  - type: cosine_recall@3
163
+ value: 0.96
164
  name: Cosine Recall@3
165
  - type: cosine_recall@5
166
+ value: 0.9866666666666667
167
  name: Cosine Recall@5
168
  - type: cosine_recall@10
169
+ value: 0.9911111111111112
170
  name: Cosine Recall@10
171
  - type: cosine_ndcg@10
172
+ value: 0.940825047039427
173
  name: Cosine Ndcg@10
174
  - type: cosine_mrr@10
175
+ value: 0.924
176
  name: Cosine Mrr@10
177
  - type: cosine_map@100
178
+ value: 0.9245274971941638
179
  name: Cosine Map@100
180
  - task:
181
  type: information-retrieval
 
185
  type: dim_512
186
  metrics:
187
  - type: cosine_accuracy@1
188
+ value: 0.8711111111111111
189
  name: Cosine Accuracy@1
190
  - type: cosine_accuracy@3
191
+ value: 0.96
192
  name: Cosine Accuracy@3
193
  - type: cosine_accuracy@5
194
+ value: 0.9866666666666667
195
  name: Cosine Accuracy@5
196
  - type: cosine_accuracy@10
197
+ value: 0.9911111111111112
198
  name: Cosine Accuracy@10
199
  - type: cosine_precision@1
200
+ value: 0.8711111111111111
201
  name: Cosine Precision@1
202
  - type: cosine_precision@3
203
+ value: 0.32
204
  name: Cosine Precision@3
205
  - type: cosine_precision@5
206
+ value: 0.19733333333333336
207
  name: Cosine Precision@5
208
  - type: cosine_precision@10
209
+ value: 0.09911111111111114
210
  name: Cosine Precision@10
211
  - type: cosine_recall@1
212
+ value: 0.8711111111111111
213
  name: Cosine Recall@1
214
  - type: cosine_recall@3
215
+ value: 0.96
216
  name: Cosine Recall@3
217
  - type: cosine_recall@5
218
+ value: 0.9866666666666667
219
  name: Cosine Recall@5
220
  - type: cosine_recall@10
221
+ value: 0.9911111111111112
222
  name: Cosine Recall@10
223
  - type: cosine_ndcg@10
224
+ value: 0.938126332642602
225
  name: Cosine Ndcg@10
226
  - type: cosine_mrr@10
227
+ value: 0.9202962962962962
228
  name: Cosine Mrr@10
229
  - type: cosine_map@100
230
+ value: 0.9207248677248678
231
  name: Cosine Map@100
232
  - task:
233
  type: information-retrieval
 
237
  type: dim_256
238
  metrics:
239
  - type: cosine_accuracy@1
240
+ value: 0.8755555555555555
241
  name: Cosine Accuracy@1
242
  - type: cosine_accuracy@3
243
+ value: 0.96
244
  name: Cosine Accuracy@3
245
  - type: cosine_accuracy@5
246
+ value: 0.9866666666666667
247
  name: Cosine Accuracy@5
248
  - type: cosine_accuracy@10
249
+ value: 0.9911111111111112
250
  name: Cosine Accuracy@10
251
  - type: cosine_precision@1
252
+ value: 0.8755555555555555
253
  name: Cosine Precision@1
254
  - type: cosine_precision@3
255
+ value: 0.32
256
  name: Cosine Precision@3
257
  - type: cosine_precision@5
258
+ value: 0.19733333333333336
259
  name: Cosine Precision@5
260
  - type: cosine_precision@10
261
+ value: 0.09911111111111114
262
  name: Cosine Precision@10
263
  - type: cosine_recall@1
264
+ value: 0.8755555555555555
265
  name: Cosine Recall@1
266
  - type: cosine_recall@3
267
+ value: 0.96
268
  name: Cosine Recall@3
269
  - type: cosine_recall@5
270
+ value: 0.9866666666666667
271
  name: Cosine Recall@5
272
  - type: cosine_recall@10
273
+ value: 0.9911111111111112
274
  name: Cosine Recall@10
275
  - type: cosine_ndcg@10
276
+ value: 0.9395718726230007
277
  name: Cosine Ndcg@10
278
  - type: cosine_mrr@10
279
+ value: 0.9222962962962963
280
  name: Cosine Mrr@10
281
  - type: cosine_map@100
282
+ value: 0.9227724867724867
283
  name: Cosine Map@100
284
  - task:
285
  type: information-retrieval
 
289
  type: dim_128
290
  metrics:
291
  - type: cosine_accuracy@1
292
+ value: 0.8666666666666667
293
  name: Cosine Accuracy@1
294
  - type: cosine_accuracy@3
295
+ value: 0.9555555555555556
296
  name: Cosine Accuracy@3
297
  - type: cosine_accuracy@5
298
+ value: 0.9866666666666667
299
  name: Cosine Accuracy@5
300
  - type: cosine_accuracy@10
301
+ value: 0.9911111111111112
302
  name: Cosine Accuracy@10
303
  - type: cosine_precision@1
304
+ value: 0.8666666666666667
305
  name: Cosine Precision@1
306
  - type: cosine_precision@3
307
+ value: 0.3185185185185185
308
  name: Cosine Precision@3
309
  - type: cosine_precision@5
310
+ value: 0.19733333333333336
311
  name: Cosine Precision@5
312
  - type: cosine_precision@10
313
+ value: 0.09911111111111114
314
  name: Cosine Precision@10
315
  - type: cosine_recall@1
316
+ value: 0.8666666666666667
317
  name: Cosine Recall@1
318
  - type: cosine_recall@3
319
+ value: 0.9555555555555556
320
  name: Cosine Recall@3
321
  - type: cosine_recall@5
322
+ value: 0.9866666666666667
323
  name: Cosine Recall@5
324
  - type: cosine_recall@10
325
+ value: 0.9911111111111112
326
  name: Cosine Recall@10
327
  - type: cosine_ndcg@10
328
+ value: 0.9346269584282435
329
  name: Cosine Ndcg@10
330
  - type: cosine_mrr@10
331
+ value: 0.9157037037037037
332
  name: Cosine Mrr@10
333
  - type: cosine_map@100
334
+ value: 0.9160403095943067
335
  name: Cosine Map@100
336
  - task:
337
  type: information-retrieval
 
341
  type: dim_64
342
  metrics:
343
  - type: cosine_accuracy@1
344
+ value: 0.8311111111111111
345
  name: Cosine Accuracy@1
346
  - type: cosine_accuracy@3
347
+ value: 0.96
348
  name: Cosine Accuracy@3
349
  - type: cosine_accuracy@5
350
+ value: 0.9733333333333334
351
  name: Cosine Accuracy@5
352
  - type: cosine_accuracy@10
353
+ value: 0.9911111111111112
354
  name: Cosine Accuracy@10
355
  - type: cosine_precision@1
356
+ value: 0.8311111111111111
357
  name: Cosine Precision@1
358
  - type: cosine_precision@3
359
+ value: 0.32
360
  name: Cosine Precision@3
361
  - type: cosine_precision@5
362
+ value: 0.19466666666666665
363
  name: Cosine Precision@5
364
  - type: cosine_precision@10
365
+ value: 0.09911111111111114
366
  name: Cosine Precision@10
367
  - type: cosine_recall@1
368
+ value: 0.8311111111111111
369
  name: Cosine Recall@1
370
  - type: cosine_recall@3
371
+ value: 0.96
372
  name: Cosine Recall@3
373
  - type: cosine_recall@5
374
+ value: 0.9733333333333334
375
  name: Cosine Recall@5
376
  - type: cosine_recall@10
377
+ value: 0.9911111111111112
378
  name: Cosine Recall@10
379
  - type: cosine_ndcg@10
380
+ value: 0.9208110890988729
381
  name: Cosine Ndcg@10
382
  - type: cosine_mrr@10
383
+ value: 0.8971957671957672
384
  name: Cosine Mrr@10
385
  - type: cosine_map@100
386
+ value: 0.8975242479721762
387
  name: Cosine Map@100
388
  ---
389
 
390
+ # gte-large-en-v1.5-financial-rag-matryoshka
391
 
392
  This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
393
 
 
436
  model = SentenceTransformer("rbhatia46/gte-large-en-v1.5-financial-rag-matryoshka")
437
  # Run inference
438
  sentences = [
439
+ 'JP Morgan reported total deposits of $2.6 trillion in the year ending December 31, 2023.',
440
+ "What were JP Morgan's total deposits in 2023?",
441
+ 'What is the primary source of revenue for the software company, Microsoft?',
442
  ]
443
  embeddings = model.encode(sentences)
444
  print(embeddings.shape)
 
484
 
485
  | Metric | Value |
486
  |:--------------------|:-----------|
487
+ | cosine_accuracy@1 | 0.88 |
488
+ | cosine_accuracy@3 | 0.96 |
489
+ | cosine_accuracy@5 | 0.9867 |
490
+ | cosine_accuracy@10 | 0.9956 |
491
+ | cosine_precision@1 | 0.88 |
492
+ | cosine_precision@3 | 0.32 |
493
+ | cosine_precision@5 | 0.1973 |
494
+ | cosine_precision@10 | 0.0996 |
495
+ | cosine_recall@1 | 0.88 |
496
+ | cosine_recall@3 | 0.96 |
497
+ | cosine_recall@5 | 0.9867 |
498
+ | cosine_recall@10 | 0.9956 |
499
+ | cosine_ndcg@10 | 0.9427 |
500
+ | cosine_mrr@10 | 0.9252 |
501
+ | **cosine_map@100** | **0.9254** |
502
 
503
  #### Information Retrieval
504
  * Dataset: `dim_768`
 
506
 
507
  | Metric | Value |
508
  |:--------------------|:-----------|
509
+ | cosine_accuracy@1 | 0.88 |
510
+ | cosine_accuracy@3 | 0.96 |
511
+ | cosine_accuracy@5 | 0.9867 |
512
+ | cosine_accuracy@10 | 0.9911 |
513
+ | cosine_precision@1 | 0.88 |
514
+ | cosine_precision@3 | 0.32 |
515
+ | cosine_precision@5 | 0.1973 |
516
+ | cosine_precision@10 | 0.0991 |
517
+ | cosine_recall@1 | 0.88 |
518
+ | cosine_recall@3 | 0.96 |
519
+ | cosine_recall@5 | 0.9867 |
520
+ | cosine_recall@10 | 0.9911 |
521
+ | cosine_ndcg@10 | 0.9408 |
522
+ | cosine_mrr@10 | 0.924 |
523
+ | **cosine_map@100** | **0.9245** |
524
 
525
  #### Information Retrieval
526
  * Dataset: `dim_512`
 
528
 
529
  | Metric | Value |
530
  |:--------------------|:-----------|
531
+ | cosine_accuracy@1 | 0.8711 |
532
+ | cosine_accuracy@3 | 0.96 |
533
+ | cosine_accuracy@5 | 0.9867 |
534
+ | cosine_accuracy@10 | 0.9911 |
535
+ | cosine_precision@1 | 0.8711 |
536
+ | cosine_precision@3 | 0.32 |
537
+ | cosine_precision@5 | 0.1973 |
538
+ | cosine_precision@10 | 0.0991 |
539
+ | cosine_recall@1 | 0.8711 |
540
+ | cosine_recall@3 | 0.96 |
541
+ | cosine_recall@5 | 0.9867 |
542
+ | cosine_recall@10 | 0.9911 |
543
+ | cosine_ndcg@10 | 0.9381 |
544
+ | cosine_mrr@10 | 0.9203 |
545
+ | **cosine_map@100** | **0.9207** |
546
 
547
  #### Information Retrieval
548
  * Dataset: `dim_256`
 
550
 
551
  | Metric | Value |
552
  |:--------------------|:-----------|
553
+ | cosine_accuracy@1 | 0.8756 |
554
+ | cosine_accuracy@3 | 0.96 |
555
+ | cosine_accuracy@5 | 0.9867 |
556
+ | cosine_accuracy@10 | 0.9911 |
557
+ | cosine_precision@1 | 0.8756 |
558
+ | cosine_precision@3 | 0.32 |
559
+ | cosine_precision@5 | 0.1973 |
560
  | cosine_precision@10 | 0.0991 |
561
+ | cosine_recall@1 | 0.8756 |
562
+ | cosine_recall@3 | 0.96 |
563
+ | cosine_recall@5 | 0.9867 |
564
+ | cosine_recall@10 | 0.9911 |
565
+ | cosine_ndcg@10 | 0.9396 |
566
+ | cosine_mrr@10 | 0.9223 |
567
+ | **cosine_map@100** | **0.9228** |
568
 
569
  #### Information Retrieval
570
  * Dataset: `dim_128`
571
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
572
 
573
+ | Metric | Value |
574
+ |:--------------------|:----------|
575
+ | cosine_accuracy@1 | 0.8667 |
576
+ | cosine_accuracy@3 | 0.9556 |
577
+ | cosine_accuracy@5 | 0.9867 |
578
+ | cosine_accuracy@10 | 0.9911 |
579
+ | cosine_precision@1 | 0.8667 |
580
+ | cosine_precision@3 | 0.3185 |
581
+ | cosine_precision@5 | 0.1973 |
582
+ | cosine_precision@10 | 0.0991 |
583
+ | cosine_recall@1 | 0.8667 |
584
+ | cosine_recall@3 | 0.9556 |
585
+ | cosine_recall@5 | 0.9867 |
586
+ | cosine_recall@10 | 0.9911 |
587
+ | cosine_ndcg@10 | 0.9346 |
588
+ | cosine_mrr@10 | 0.9157 |
589
+ | **cosine_map@100** | **0.916** |
590
 
591
  #### Information Retrieval
592
  * Dataset: `dim_64`
593
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
594
 
595
+ | Metric | Value |
596
+ |:--------------------|:-----------|
597
+ | cosine_accuracy@1 | 0.8311 |
598
+ | cosine_accuracy@3 | 0.96 |
599
+ | cosine_accuracy@5 | 0.9733 |
600
+ | cosine_accuracy@10 | 0.9911 |
601
+ | cosine_precision@1 | 0.8311 |
602
+ | cosine_precision@3 | 0.32 |
603
+ | cosine_precision@5 | 0.1947 |
604
+ | cosine_precision@10 | 0.0991 |
605
+ | cosine_recall@1 | 0.8311 |
606
+ | cosine_recall@3 | 0.96 |
607
+ | cosine_recall@5 | 0.9733 |
608
+ | cosine_recall@10 | 0.9911 |
609
+ | cosine_ndcg@10 | 0.9208 |
610
+ | cosine_mrr@10 | 0.8972 |
611
+ | **cosine_map@100** | **0.8975** |
612
 
613
  <!--
614
  ## Bias, Risks and Limitations
 
629
  #### Unnamed Dataset
630
 
631
 
632
+ * Size: 4,275 training samples
633
  * Columns: <code>positive</code> and <code>anchor</code>
634
  * Approximate statistics based on the first 1000 samples:
635
  | | positive | anchor |
636
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
637
  | type | string | string |
638
+ | details | <ul><li>min: 15 tokens</li><li>mean: 44.74 tokens</li><li>max: 114 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 18.12 tokens</li><li>max: 32 tokens</li></ul> |
639
  * Samples:
640
+ | positive | anchor |
641
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
642
+ | <code>At the end of fiscal year 2023, Exxon Mobil reported a debt-to-equity ratio of 0.32, implying that the company used more equity than debt in its capital structure.</code> | <code>What was the debt-to-equity ratio for Exxon Mobil at the end of fiscal year 2023?</code> |
643
+ | <code>Amazon Web Services (AWS) generated $12.7 billion in net sales in the fourth quarter of 2020, up 28% from the same period of the previous year. It accounted for about 10% of Amazon’s total net sales for the quarter.</code> | <code>How did Amazon's AWS segment perform in the fourth quarter of 2020?</code> |
644
+ | <code>JPMorgan Chase generates revenues by providing a wide range of banking and financial services. These include investment banking (M&As, advisory), consumer and community banking (home mortgages, auto loans), commercial banking, and asset and wealth management.</code> | <code>What are the key revenue sources for JPMorgan Chase?</code> |
645
  * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
646
  ```json
647
  {
 
674
  - `per_device_eval_batch_size`: 16
675
  - `gradient_accumulation_steps`: 16
676
  - `learning_rate`: 2e-05
677
+ - `num_train_epochs`: 10
678
  - `lr_scheduler_type`: cosine
679
  - `warmup_ratio`: 0.1
680
  - `bf16`: True
 
702
  - `adam_beta2`: 0.999
703
  - `adam_epsilon`: 1e-08
704
  - `max_grad_norm`: 1.0
705
+ - `num_train_epochs`: 10
706
  - `max_steps`: -1
707
  - `lr_scheduler_type`: cosine
708
  - `lr_scheduler_kwargs`: {}
 
800
  ### Training Logs
801
  | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
802
  |:-------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
803
+ | 0.9552 | 8 | - | 0.9090 | 0.8848 | 0.8992 | 0.9052 | 0.8775 | 0.9030 |
804
+ | 1.1940 | 10 | 0.4749 | - | - | - | - | - | - |
805
+ | 1.9104 | 16 | - | 0.9170 | 0.9095 | 0.9109 | 0.9201 | 0.8961 | 0.9212 |
806
+ | 2.3881 | 20 | 0.0862 | - | - | - | - | - | - |
807
+ | 2.9851 | 25 | - | 0.9190 | 0.9071 | 0.9160 | 0.9278 | 0.8998 | 0.9234 |
808
+ | 3.5821 | 30 | 0.0315 | - | - | - | - | - | - |
809
+ | 3.9403 | 33 | - | 0.9183 | 0.9053 | 0.9122 | 0.9287 | 0.8998 | 0.9183 |
810
+ | 4.7761 | 40 | 0.0184 | - | - | - | - | - | - |
811
+ | 4.8955 | 41 | - | 0.9225 | 0.9125 | 0.9164 | 0.9260 | 0.8985 | 0.9220 |
812
+ | 5.9701 | 50 | 0.0135 | 0.9268 | 0.9132 | 0.9208 | 0.9257 | 0.8961 | 0.9271 |
813
+ | 6.9254 | 58 | - | 0.9254 | 0.9158 | 0.9202 | 0.9212 | 0.8938 | 0.9213 |
814
+ | 7.1642 | 60 | 0.0123 | - | - | - | - | - | - |
815
+ | **8.0** | **67** | **-** | **0.9253** | **0.916** | **0.9228** | **0.9207** | **0.8972** | **0.9243** |
816
+ | 8.3582 | 70 | 0.01 | - | - | - | - | - | - |
817
+ | 8.9552 | 75 | - | 0.9254 | 0.9160 | 0.9213 | 0.9207 | 0.9005 | 0.9245 |
818
+ | 9.5522 | 80 | 0.0088 | 0.9254 | 0.9160 | 0.9228 | 0.9207 | 0.8975 | 0.9245 |
819
 
820
  * The bold row denotes the saved checkpoint.
821
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bb5caa2f1c0b65eeed7770c657480d99fa8fd2b48d11771885b26587b5adfa42
3
  size 1736585680
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8ea20cd7be4fdac5063bfc2b9a9b8d2cb4437a36c5697f43a0f9a2f6326bfc1
3
  size 1736585680