{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d5f4a940310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d5f4a9403a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d5f4a940430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d5f4a9404c0>", "_build": "<function ActorCriticPolicy._build at 0x7d5f4a940550>", "forward": "<function ActorCriticPolicy.forward at 0x7d5f4a9405e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d5f4a940670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d5f4a940700>", "_predict": "<function ActorCriticPolicy._predict at 0x7d5f4a940790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d5f4a940820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d5f4a9408b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d5f4a940940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d5f4aae6ac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709483865278319690, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACBJeT43XY0/WN1APj/+xr6D12s+kiD1vQAAAAAAAAAAwIcBPp8Wdj+REhw+KWf+vmGsHD71EiM8AAAAAAAAAACKBbY+Qx0dP12ydL7fftG+RzLVPYY1CT0AAAAAAAAAAODOjz6OVAA/hDBFvsw2i76maSE9TvPDPAAAAAAAAAAAzVndvA/BR7x13dE8IJgjPSv+pr2BlAI+AACAPwAAgD8zLIc84XaMunYqKrh1TBuzYO8ZuzrXRTcAAIA/AACAP2a9rjyIarU/lvY0PzMnjD2TL5i8wh6mvQAAAAAAAAAAZvOqvK5HmbqSbbG4/uufsyUvCbuyC803AACAPwAAgD89LWm+nY07P6W+jr1TFOS+nOthvmXjwT0AAAAAAAAAADohCD4veVY98uX0vTIQK751AeS8IscyvQAAAAAAAAAAWmmVPWg3sj227se9kNkrvriIibxyla+8AAAAAAAAAAA6zQw+dW/OPvBBEL4DoJC+JGHFPBMScj0AAAAAAAAAAAbwmT6S6y8/IjkRvhJGsL7lDQs+snf+vAAAAAAAAAAAzW+KvCVTyz57PFk9LzGHvgdhM71ej609AAAAAAAAAAAAPRy9SEnduvDxrroAxZI8laF6OyhLfr0AAIA/AACAP2a6CTwKAie75WYbvKEuCz2ZoXu8mO3pPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEpV3EAHVyMAWyUTeACjAF0lEdAj4/8SwnpjnV9lChoBkdAcWBQHzH0b2gHS95oCEdAj5DDB2wFDHV9lChoBkdAKV0mdAgPmWgHS9BoCEdAj5HEOI68x3V9lChoBkdAcU9vnr6ciGgHTV0BaAhHQI+RzRfF72N1fZQoaAZHQHIB7LU1AJNoB0v0aAhHQI+Uqt3fQ8h1fZQoaAZHQD6V3fQ8fV9oB0vEaAhHQI+W1BBzFMt1fZQoaAZHQHDMpZ0Syt5oB01aAWgIR0CPlvDQZ4wAdX2UKGgGR0BxY+42CNCJaAdNFQFoCEdAj5cnQpnYhHV9lChoBkdAcMN33YcvNGgHTSUBaAhHQI+X6PXCj1x1fZQoaAZHQHIRe8CgbqBoB00oAWgIR0CPmIYdhiLEdX2UKGgGR0Bvu7QTmGM5aAdL62gIR0CPmSYmb9ZSdX2UKGgGR0Bt7WqzZ6D5aAdNHgFoCEdAj5llqi48U3V9lChoBkdAcnPJ7LMcImgHTQIBaAhHQI+bSgXdj5N1fZQoaAZHQHJ+8F+uvEFoB00TAWgIR0CPnYYnfEXMdX2UKGgGR0Bycv6/IsAeaAdNIgFoCEdAj5612icoY3V9lChoBkdAckEO938n/mgHTTkBaAhHQI+fmXgLqlh1fZQoaAZHQHGpJ3kgfU5oB00UAWgIR0CPoCkXUH6edX2UKGgGR0Bs9rJ8v24/aAdNNwFoCEdAj6DgOz6acHV9lChoBkdAcprQID5j6WgHTScBaAhHQI+hOsNlRP51fZQoaAZHQFIbPHktEohoB0vRaAhHQI+h8Jv5xip1fZQoaAZHQHGiX752yLRoB0v2aAhHQI+jqhzvJBB1fZQoaAZHQG/F9yksSTRoB00sAWgIR0CPpL4keIVNdX2UKGgGR0BwkT8UEgW8aAdL4mgIR0CPpQ/h2nsLdX2UKGgGR0BwerjIaLn+aAdNIwFoCEdAj6Y4hEBsAXV9lChoBkdAcMHcWTHKfWgHS/ZoCEdAj6Z3trsSkHV9lChoBkdAcT9gyuZCwGgHTRUBaAhHQI+nEgdOqNp1fZQoaAZHQHC3cyWRigFoB01bAWgIR0CPqjaURnOCdX2UKGgGR0BsKqLZSNwSaAdNLAFoCEdAj6ujtG/etXV9lChoBkdAcM55vtMPBmgHTSIBaAhHQI+tnlIVdop1fZQoaAZHQHDfty925hBoB00OAWgIR0CPrZ225QP7dX2UKGgGR0Bx7M1wYLssaAdL/WgIR0CPrhjXFtKqdX2UKGgGR0Bu64nlXA/LaAdL9WgIR0CPrlp7CzkZdX2UKGgGR0BtTWXAuZkTaAdNCAFoCEdAj7CjlPrOaHV9lChoBkdAcf+1m8M/hWgHTU4BaAhHQI+yHSBshxJ1fZQoaAZHQHL4L8R+SbJoB0vxaAhHQI+yNtoBaLZ1fZQoaAZHQHDzvAwfyPNoB00FAWgIR0CPs7DPWxyGdX2UKGgGR0BwsWaAnUlSaAdNMwFoCEdAj7T5XU6PsHV9lChoBkdAccIRaHKwIWgHTQUBaAhHQI+1B4QjD9B1fZQoaAZHQHB2MibDuShoB01pAWgIR0CPtWse4kNXdX2UKGgGR0BxX2A7PppwaAdNKwFoCEdAj7de6I3zc3V9lChoBkdAUkDikwevIWgHS61oCEdAj93SpBHCoHV9lChoBkdAce0SLqD9O2gHS9xoCEdAj93ovalDW3V9lChoBkdAcQIPMSsbN2gHTTMBaAhHQI/eGSdOIqN1fZQoaAZHQHEKLBj4HopoB0vwaAhHQI/hGtITXat1fZQoaAZHQHMHwTEit7toB00HAWgIR0CP4fDUmUnpdX2UKGgGR0ByGfkRzzVdaAdNbgFoCEdAj+SW+GoJiXV9lChoBkdAcX4AgPmPo2gHS/ZoCEdAj+XG78Nx2nV9lChoBkdAboe00FbFCWgHTRQBaAhHQI/l6asp5NZ1fZQoaAZHQHDvmYWtU4toB00DAWgIR0CP5m3DvVmSdX2UKGgGR0BzpKwgTyrgaAdNeQFoCEdAj+jlRgqmTHV9lChoBkdAcsX5tFa0QmgHTQoBaAhHQI/p74Fiay91fZQoaAZHQGVzxA0Kqn5oB03oA2gIR0CP6qgLZzxPdX2UKGgGR0ByXUNnXd0raAdNMAFoCEdAj+r9e6ZpjHV9lChoBkdAbtvnyup0fmgHS/poCEdAj+uQLNOdoXV9lChoBkdAcPn7ZFocrGgHTSYBaAhHQI/rsHWz4UN1fZQoaAZHQHEkjHjp9qloB00oAWgIR0CP7CZ9/jKgdX2UKGgGR0BxbofaHsTnaAdNBwFoCEdAj+0RTKkl/3V9lChoBkdAcdz6Oo5xR2gHTSEBaAhHQI/ujMxGlRB1fZQoaAZHQHAXuxOclPdoB004AWgIR0CP73CXyAhCdX2UKGgGR0BySMNrj5sTaAdNGQFoCEdAj/Hea8YhuHV9lChoBkdAcOU1bJOnEWgHTTwBaAhHQI/y+V1Oj7B1fZQoaAZHQGxaXrUsnRdoB0vxaAhHQI/zyd4FA3V1fZQoaAZHQHHpwLeANG5oB00RAWgIR0CP8+BNmDlHdX2UKGgGR0ByDFzS1E3LaAdNFAFoCEdAj/UCiRGMGXV9lChoBkdAchquIAOrhmgHTUQBaAhHQI/32VeKKpF1fZQoaAZHQG6uQDvE0i1oB0voaAhHQI/31HjIaLp1fZQoaAZHQHGKbWuoxYdoB00GAWgIR0CP+MK3uuzQdX2UKGgGR0ByfQ+otL+QaAdNBAFoCEdAj/jyZjQRgHV9lChoBkdAcsmGTs6aLGgHS+ZoCEdAj/ltWluWKXV9lChoBkdAbLYEzwc5sGgHTTEBaAhHQI/6bOZ9d/t1fZQoaAZHQHIQqbWmP5poB01NAWgIR0CP+viI+GGmdX2UKGgGR0BxoTWxyGSIaAdL72gIR0CP+2OmR/3GdX2UKGgGR0BuRYTfzjFRaAdNMwFoCEdAj/xWWpqASXV9lChoBkdAcu8Zl4C6pmgHTVkBaAhHQI/9y6WgOBl1fZQoaAZHQG6t7GWD6FdoB00ZAWgIR0CP/lJEpiI+dX2UKGgGR0ByfngvUSZjaAdL7WgIR0CP/2CL/CIldX2UKGgGR0BwHTb9If8uaAdNEQFoCEdAkAARl6JIlXV9lChoBkdAcdLK3d9DyGgHS95oCEdAkABHck+otXV9lChoBkdAbrrspG4I8mgHTRYBaAhHQJABJdu5z5p1fZQoaAZHQHFCgieNDMNoB00vAWgIR0CQAcf5ULlWdX2UKGgGR0Byjx6IFeOXaAdNCQFoCEdAkALYP5HmR3V9lChoBkdAciPLOAy2yGgHS/poCEdAkAM3XZoPCnV9lChoBkdAbz/oK2KEWmgHTRIBaAhHQJADrYFqzqt1fZQoaAZHQHBXYlD4QBhoB0v5aAhHQJAEHyXlbNd1fZQoaAZHQGzzp7sv7FdoB0v0aAhHQJAEQfT1CgN1fZQoaAZHQHKuzcuanaZoB00QAWgIR0CQBIaW5YozdX2UKGgGR0BsP2xIJ7b+aAdNTwFoCEdAkAT2Lgn+h3V9lChoBkdAcyHOpbUwz2gHTQUBaAhHQJAFRVxS5y51fZQoaAZHQHGoebmU4aRoB01TAWgIR0CQBXKYiPhidX2UKGgGR0BEBt7SiM5waAdLzmgIR0CQBgeumrKedX2UKGgGR0By/SblRxcWaAdNEwFoCEdAkAZN8iOea3V9lChoBkdAUruimEXcg2gHS5RoCEdAkAcuqvNeMXV9lChoBkdAcwUS6UaAF2gHTTcBaAhHQJAHeTJQtSR1fZQoaAZHQHIJVkc0cfhoB00mAWgIR0CQB530wrUcdX2UKGgGR0ArhPl+3H7xaAdLhGgIR0CQB5trbg0kdX2UKGgGR0ByH2814xDcaAdNLAFoCEdAkAgWJzkp7XV9lChoBkdAcaCo8IRh+mgHTSABaAhHQJAI14hUzbh1fZQoaAZHQHNUWpQ1rIpoB00LAWgIR0CQCObkwN9ZdX2UKGgGR0Bwpy1Cw8nvaAdL52gIR0CQCOc/dIoWdX2UKGgGR0BvnFaW5YozaAdNBAFoCEdAkAo/qs2ehHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |