raulgdp commited on
Commit
c89eb37
·
verified ·
1 Parent(s): 1f5c7f8

End of training

Browse files
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.6381977967570244
30
  - name: Recall
31
  type: recall
32
- value: 0.621055167429535
33
  - name: F1
34
  type: f1
35
- value: 0.6295097979366338
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9309591653454259
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.2431
49
- - Precision: 0.6382
50
- - Recall: 0.6211
51
- - F1: 0.6295
52
- - Accuracy: 0.9310
53
 
54
  ## Model description
55
 
@@ -72,21 +72,22 @@ The following hyperparameters were used during training:
72
  - train_batch_size: 16
73
  - eval_batch_size: 16
74
  - seed: 42
75
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
  - lr_scheduler_type: linear
77
- - num_epochs: 2
78
 
79
  ### Training results
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | 0.3539 | 1.0 | 521 | 0.2735 | 0.5837 | 0.5829 | 0.5833 | 0.9218 |
84
- | 0.207 | 2.0 | 1042 | 0.2431 | 0.6382 | 0.6211 | 0.6295 | 0.9310 |
 
85
 
86
 
87
  ### Framework versions
88
 
89
- - Transformers 4.45.1
90
- - Pytorch 2.4.0+cpu
91
- - Datasets 3.0.1
92
- - Tokenizers 0.20.0
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.6718920889537003
30
  - name: Recall
31
  type: recall
32
+ value: 0.6659841002168152
33
  - name: F1
34
  type: f1
35
+ value: 0.6689250499062368
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9377446143270542
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.2240
49
+ - Precision: 0.6719
50
+ - Recall: 0.6660
51
+ - F1: 0.6689
52
+ - Accuracy: 0.9377
53
 
54
  ## Model description
55
 
 
72
  - train_batch_size: 16
73
  - eval_batch_size: 16
74
  - seed: 42
75
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
  - lr_scheduler_type: linear
77
+ - num_epochs: 3
78
 
79
  ### Training results
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.3562 | 1.0 | 521 | 0.2669 | 0.6139 | 0.5870 | 0.6001 | 0.9250 |
84
+ | 0.1976 | 2.0 | 1042 | 0.2408 | 0.6180 | 0.6697 | 0.6428 | 0.9303 |
85
+ | 0.1519 | 3.0 | 1563 | 0.2240 | 0.6719 | 0.6660 | 0.6689 | 0.9377 |
86
 
87
 
88
  ### Framework versions
89
 
90
+ - Transformers 4.46.2
91
+ - Pytorch 2.5.1+cu121
92
+ - Datasets 3.1.0
93
+ - Tokenizers 0.20.3
runs/Nov23_00-35-10_e01600b1e65a/events.out.tfevents.1732322132.e01600b1e65a.382.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:33c3ab74cd35f1303fe3f4f223211ef73be4ad6c8d2272630c93e78dd6e1fbc0
3
- size 6957
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecca718cf6f921babdd6858e524751332a3a228eb67a6a5912341a6cf2a3f1fe
3
+ size 7783
runs/Nov23_00-35-10_e01600b1e65a/events.out.tfevents.1732322667.e01600b1e65a.382.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fad1257f3105ecf0d73a0cb232027372c0ee0bbd95993f29d53e50eec44ecd39
3
+ size 560