update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,10 +43,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [BSC-LT/roberta-base-bne-capitel-ner](https://huggingface.co/BSC-LT/roberta-base-bne-capitel-ner) on the conll2002 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
- Accuracy: 0.9785
|
51 |
|
52 |
## Model description
|
@@ -78,9 +78,9 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.0197 | 3.0 | 1563 | 0.
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.8614552827213336
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.8786764705882353
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.8699806620407236
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9785031604018444
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [BSC-LT/roberta-base-bne-capitel-ner](https://huggingface.co/BSC-LT/roberta-base-bne-capitel-ner) on the conll2002 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0944
|
47 |
+
- Precision: 0.8615
|
48 |
+
- Recall: 0.8787
|
49 |
+
- F1: 0.8700
|
50 |
- Accuracy: 0.9785
|
51 |
|
52 |
## Model description
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.104 | 1.0 | 521 | 0.0823 | 0.8616 | 0.8814 | 0.8714 | 0.9789 |
|
82 |
+
| 0.034 | 2.0 | 1042 | 0.0855 | 0.8601 | 0.8773 | 0.8686 | 0.9777 |
|
83 |
+
| 0.0197 | 3.0 | 1563 | 0.0944 | 0.8615 | 0.8787 | 0.8700 | 0.9785 |
|
84 |
|
85 |
|
86 |
### Framework versions
|