raulgdp commited on
Commit
eef9bb0
1 Parent(s): 2b898ee

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.8596766951055231
28
  - name: Recall
29
  type: recall
30
- value: 0.8798253676470589
31
  - name: F1
32
  type: f1
33
- value: 0.8696343402225755
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9784573574765641
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,10 +43,10 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [BSC-LT/roberta-base-bne-capitel-ner](https://huggingface.co/BSC-LT/roberta-base-bne-capitel-ner) on the conll2002 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0936
47
- - Precision: 0.8597
48
- - Recall: 0.8798
49
- - F1: 0.8696
50
  - Accuracy: 0.9785
51
 
52
  ## Model description
@@ -78,9 +78,9 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.1004 | 1.0 | 521 | 0.0850 | 0.8579 | 0.8821 | 0.8698 | 0.9782 |
82
- | 0.0336 | 2.0 | 1042 | 0.0849 | 0.8584 | 0.8775 | 0.8679 | 0.9783 |
83
- | 0.0197 | 3.0 | 1563 | 0.0936 | 0.8597 | 0.8798 | 0.8696 | 0.9785 |
84
 
85
 
86
  ### Framework versions
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.8614552827213336
28
  - name: Recall
29
  type: recall
30
+ value: 0.8786764705882353
31
  - name: F1
32
  type: f1
33
+ value: 0.8699806620407236
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9785031604018444
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [BSC-LT/roberta-base-bne-capitel-ner](https://huggingface.co/BSC-LT/roberta-base-bne-capitel-ner) on the conll2002 dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0944
47
+ - Precision: 0.8615
48
+ - Recall: 0.8787
49
+ - F1: 0.8700
50
  - Accuracy: 0.9785
51
 
52
  ## Model description
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.104 | 1.0 | 521 | 0.0823 | 0.8616 | 0.8814 | 0.8714 | 0.9789 |
82
+ | 0.034 | 2.0 | 1042 | 0.0855 | 0.8601 | 0.8773 | 0.8686 | 0.9777 |
83
+ | 0.0197 | 3.0 | 1563 | 0.0944 | 0.8615 | 0.8787 | 0.8700 | 0.9785 |
84
 
85
 
86
  ### Framework versions