update model card README.md
Browse files
README.md
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
base_model: bert-base-cased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
-
-
|
8 |
metrics:
|
9 |
- precision
|
10 |
- recall
|
@@ -17,24 +16,24 @@ model-index:
|
|
17 |
name: Token Classification
|
18 |
type: token-classification
|
19 |
dataset:
|
20 |
-
name:
|
21 |
-
type:
|
22 |
-
config:
|
23 |
split: validation
|
24 |
-
args:
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -42,13 +41,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
42 |
|
43 |
# bert-finetuned-ner
|
44 |
|
45 |
-
This model is a fine-tuned version of [
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,14 +78,14 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
-
- Transformers 4.
|
90 |
-
- Pytorch 2.0.
|
91 |
-
- Datasets 2.
|
92 |
- Tokenizers 0.13.3
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
+
- conll2002
|
7 |
metrics:
|
8 |
- precision
|
9 |
- recall
|
|
|
16 |
name: Token Classification
|
17 |
type: token-classification
|
18 |
dataset:
|
19 |
+
name: conll2002
|
20 |
+
type: conll2002
|
21 |
+
config: es
|
22 |
split: validation
|
23 |
+
args: es
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.8596766951055231
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.8798253676470589
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.8696343402225755
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9784573574765641
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
41 |
|
42 |
# bert-finetuned-ner
|
43 |
|
44 |
+
This model is a fine-tuned version of [BSC-LT/roberta-base-bne-capitel-ner](https://huggingface.co/BSC-LT/roberta-base-bne-capitel-ner) on the conll2002 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0936
|
47 |
+
- Precision: 0.8597
|
48 |
+
- Recall: 0.8798
|
49 |
+
- F1: 0.8696
|
50 |
+
- Accuracy: 0.9785
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.1004 | 1.0 | 521 | 0.0850 | 0.8579 | 0.8821 | 0.8698 | 0.9782 |
|
82 |
+
| 0.0336 | 2.0 | 1042 | 0.0849 | 0.8584 | 0.8775 | 0.8679 | 0.9783 |
|
83 |
+
| 0.0197 | 3.0 | 1563 | 0.0936 | 0.8597 | 0.8798 | 0.8696 | 0.9785 |
|
84 |
|
85 |
|
86 |
### Framework versions
|
87 |
|
88 |
+
- Transformers 4.30.2
|
89 |
+
- Pytorch 2.0.0
|
90 |
+
- Datasets 2.1.0
|
91 |
- Tokenizers 0.13.3
|