rathanveer commited on
Commit
4c9315a
1 Parent(s): 7571b6e

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.6674
21
+ - Answer: {'precision': 0.6954595791805094, 'recall': 0.7762669962917181, 'f1': 0.7336448598130841, 'number': 809}
22
+ - Header: {'precision': 0.32061068702290074, 'recall': 0.35294117647058826, 'f1': 0.336, 'number': 119}
23
+ - Question: {'precision': 0.7581196581196581, 'recall': 0.8328638497652582, 'f1': 0.7937360178970916, 'number': 1065}
24
+ - Overall Precision: 0.7064
25
+ - Overall Recall: 0.7812
26
+ - Overall F1: 0.7420
27
+ - Overall Accuracy: 0.8062
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7631 | 1.0 | 10 | 1.5642 | {'precision': 0.020954598370197905, 'recall': 0.022249690976514216, 'f1': 0.02158273381294964, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2592137592137592, 'recall': 0.19812206572769953, 'f1': 0.22458754656732305, 'number': 1065} | 0.1369 | 0.1149 | 0.1249 | 0.3744 |
60
+ | 1.4027 | 2.0 | 20 | 1.2058 | {'precision': 0.2994871794871795, 'recall': 0.36093943139678614, 'f1': 0.32735426008968616, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.43074691805656273, 'recall': 0.5577464788732395, 'f1': 0.48608837970540103, 'number': 1065} | 0.3764 | 0.4446 | 0.4076 | 0.6093 |
61
+ | 1.0483 | 3.0 | 30 | 0.9188 | {'precision': 0.5052854122621564, 'recall': 0.5908529048207664, 'f1': 0.5447293447293446, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5563218390804597, 'recall': 0.6816901408450704, 'f1': 0.6126582278481012, 'number': 1065} | 0.5325 | 0.6041 | 0.5661 | 0.7192 |
62
+ | 0.8029 | 4.0 | 40 | 0.7734 | {'precision': 0.6087408949011447, 'recall': 0.723114956736712, 'f1': 0.6610169491525424, 'number': 809} | {'precision': 0.0967741935483871, 'recall': 0.05042016806722689, 'f1': 0.06629834254143646, 'number': 119} | {'precision': 0.646677471636953, 'recall': 0.7492957746478873, 'f1': 0.6942148760330579, 'number': 1065} | 0.6154 | 0.6969 | 0.6536 | 0.7601 |
63
+ | 0.6459 | 5.0 | 50 | 0.7058 | {'precision': 0.6804932735426009, 'recall': 0.7503090234857849, 'f1': 0.713697824808936, 'number': 809} | {'precision': 0.1951219512195122, 'recall': 0.13445378151260504, 'f1': 0.15920398009950248, 'number': 119} | {'precision': 0.697065820777161, 'recall': 0.8253521126760563, 'f1': 0.7558039552880481, 'number': 1065} | 0.6720 | 0.7536 | 0.7105 | 0.7922 |
64
+ | 0.5563 | 6.0 | 60 | 0.6929 | {'precision': 0.6706008583690987, 'recall': 0.7725587144622992, 'f1': 0.7179781734635267, 'number': 809} | {'precision': 0.25287356321839083, 'recall': 0.18487394957983194, 'f1': 0.21359223300970878, 'number': 119} | {'precision': 0.730999146029035, 'recall': 0.8037558685446009, 'f1': 0.7656529516994633, 'number': 1065} | 0.6863 | 0.7541 | 0.7186 | 0.7852 |
65
+ | 0.4789 | 7.0 | 70 | 0.6587 | {'precision': 0.6681127982646421, 'recall': 0.761433868974042, 'f1': 0.7117273252455227, 'number': 809} | {'precision': 0.24242424242424243, 'recall': 0.20168067226890757, 'f1': 0.2201834862385321, 'number': 119} | {'precision': 0.7401837928153717, 'recall': 0.831924882629108, 'f1': 0.7833775419982316, 'number': 1065} | 0.6880 | 0.7657 | 0.7248 | 0.7977 |
66
+ | 0.4306 | 8.0 | 80 | 0.6571 | {'precision': 0.6606765327695561, 'recall': 0.7725587144622992, 'f1': 0.7122507122507123, 'number': 809} | {'precision': 0.25, 'recall': 0.25210084033613445, 'f1': 0.2510460251046025, 'number': 119} | {'precision': 0.7340513670256835, 'recall': 0.831924882629108, 'f1': 0.7799295774647887, 'number': 1065} | 0.6780 | 0.7732 | 0.7225 | 0.8007 |
67
+ | 0.3749 | 9.0 | 90 | 0.6571 | {'precision': 0.6827133479212254, 'recall': 0.7713226205191595, 'f1': 0.7243180499129426, 'number': 809} | {'precision': 0.30434782608695654, 'recall': 0.29411764705882354, 'f1': 0.29914529914529914, 'number': 119} | {'precision': 0.7328370554177006, 'recall': 0.831924882629108, 'f1': 0.7792436235708003, 'number': 1065} | 0.6903 | 0.7752 | 0.7303 | 0.8022 |
68
+ | 0.3722 | 10.0 | 100 | 0.6581 | {'precision': 0.6774193548387096, 'recall': 0.7787391841779975, 'f1': 0.7245543415756182, 'number': 809} | {'precision': 0.3, 'recall': 0.3025210084033613, 'f1': 0.301255230125523, 'number': 119} | {'precision': 0.7462311557788944, 'recall': 0.8366197183098592, 'f1': 0.7888446215139443, 'number': 1065} | 0.6939 | 0.7812 | 0.7350 | 0.8036 |
69
+ | 0.3155 | 11.0 | 110 | 0.6649 | {'precision': 0.6891304347826087, 'recall': 0.7836835599505563, 'f1': 0.733371891266628, 'number': 809} | {'precision': 0.32786885245901637, 'recall': 0.33613445378151263, 'f1': 0.33195020746887965, 'number': 119} | {'precision': 0.7489469250210615, 'recall': 0.8347417840375587, 'f1': 0.7895204262877443, 'number': 1065} | 0.7012 | 0.7842 | 0.7404 | 0.8070 |
70
+ | 0.2968 | 12.0 | 120 | 0.6687 | {'precision': 0.6901098901098901, 'recall': 0.7762669962917181, 'f1': 0.7306573589296103, 'number': 809} | {'precision': 0.3106060606060606, 'recall': 0.3445378151260504, 'f1': 0.32669322709163345, 'number': 119} | {'precision': 0.752129471890971, 'recall': 0.8291079812206573, 'f1': 0.7887449754354622, 'number': 1065} | 0.7004 | 0.7787 | 0.7375 | 0.8053 |
71
+ | 0.2871 | 13.0 | 130 | 0.6709 | {'precision': 0.6904761904761905, 'recall': 0.788627935723115, 'f1': 0.7362954414310445, 'number': 809} | {'precision': 0.33064516129032256, 'recall': 0.3445378151260504, 'f1': 0.33744855967078186, 'number': 119} | {'precision': 0.7709790209790209, 'recall': 0.828169014084507, 'f1': 0.7985513807152557, 'number': 1065} | 0.7121 | 0.7832 | 0.7460 | 0.8055 |
72
+ | 0.2642 | 14.0 | 140 | 0.6679 | {'precision': 0.6991051454138703, 'recall': 0.7725587144622992, 'f1': 0.7339988256018791, 'number': 809} | {'precision': 0.31851851851851853, 'recall': 0.36134453781512604, 'f1': 0.33858267716535434, 'number': 119} | {'precision': 0.7606112054329371, 'recall': 0.8413145539906103, 'f1': 0.7989300044583147, 'number': 1065} | 0.7087 | 0.7847 | 0.7448 | 0.8074 |
73
+ | 0.2651 | 15.0 | 150 | 0.6674 | {'precision': 0.6954595791805094, 'recall': 0.7762669962917181, 'f1': 0.7336448598130841, 'number': 809} | {'precision': 0.32061068702290074, 'recall': 0.35294117647058826, 'f1': 0.336, 'number': 119} | {'precision': 0.7581196581196581, 'recall': 0.8328638497652582, 'f1': 0.7937360178970916, 'number': 1065} | 0.7064 | 0.7812 | 0.7420 | 0.8062 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.42.4
79
+ - Pytorch 2.3.1+cu121
80
+ - Datasets 2.20.0
81
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1721880625.ab18c22696e9.339.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:af77691bf289d033e013dbd89c8833d11766240f136f853b9af9d087ef78d8b7
3
- size 14226
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:944a372f31ed14d148a4fdf4628840a525ef00ef08331b7466913f91060839dd
3
+ size 16010
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff