rashmikamath01 commited on
Commit
3eb25e3
·
1 Parent(s): bb287cf

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ model-index:
9
+ - name: distillbert-fine-tuned-claimbuster3C
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # distillbert-fine-tuned-claimbuster3C
17
+
18
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.4152
21
+ - Accuracy: 0.8749
22
+ - F1: 0.8748
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 16
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 3
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
54
+ | 0.3364 | 1.0 | 1177 | 0.3138 | 0.8659 | 0.8634 |
55
+ | 0.2366 | 2.0 | 2354 | 0.3200 | 0.8766 | 0.8764 |
56
+ | 0.1561 | 3.0 | 3531 | 0.4152 | 0.8749 | 0.8748 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.27.4
62
+ - Pytorch 2.0.0+cu118
63
+ - Datasets 2.11.0
64
+ - Tokenizers 0.13.2