ppo-LunarLander-v2 / config.json
ralphkalweit's picture
Upload PPO LunarLander-v2 trained agent
dd89370 verified
raw
history blame
13 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7da8a54d0d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7da8a54d0dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7da8a54d0e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7da8a54d0ee0>", "_build": "<function ActorCriticPolicy._build at 0x7da8a54d0f70>", "forward": "<function ActorCriticPolicy.forward at 0x7da8a54d1000>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7da8a54d1090>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7da8a54d1120>", "_predict": "<function ActorCriticPolicy._predict at 0x7da8a54d11b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7da8a54d1240>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7da8a54d12d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7da8a54d1360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7da8a546e040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1701888, "_total_timesteps": 1700000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718791812799516113, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAABqTJj1Xh0k8/6mAvkTf9L3HGsa9odYsvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0011105882352941965, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHN7yg00m+mMAWyUS9OMAXSUR0CpI39eY2KmdX2UKGgGR0BvG/R9gF5faAdL0mgIR0CpJBz19ORDdX2UKGgGR0BuxHXRPXTWaAdL7mgIR0CpJMs9bHIZdX2UKGgGR0BzpgK1G9YfaAdL+WgIR0CpJYLHlwLmdX2UKGgGR0Bwi9X4j8k2aAdLzmgIR0CpJhrNGEwndX2UKGgGR0ByvLgl4TsZaAdNKAFoCEdAqSb48hcJMXV9lChoBkdAZZzEk0JnhGgHTegDaAhHQKkrP4fwI+p1fZQoaAZHQHFGRnjABT5oB0vFaAhHQKkrzLDAJsx1fZQoaAZHQG4bCBf8dghoB0vFaAhHQKksYiDdxhl1fZQoaAZHQHI2LRa5f+loB0vMaAhHQKks/DuSfUZ1fZQoaAZHQHEOYL9deIFoB0vfaAhHQKktoi5/b0x1fZQoaAZHQHKFDw6QvHtoB0vqaAhHQKkudRnezld1fZQoaAZHQHJ9yKNyYHBoB0vFaAhHQKkw5QID5j91fZQoaAZHQHD9/5ckdFRoB0u/aAhHQKkxqqaPS2J1fZQoaAZHQHISEKmbb11oB0vcaAhHQKkykAG0NSZ1fZQoaAZHQHE6CU5dWyVoB0u3aAhHQKkzRqxkd3l1fZQoaAZHQHJQfo7muDBoB0vkaAhHQKk0KpxWDHx1fZQoaAZHQHFpUp3HJcRoB0vdaAhHQKk091q33Ht1fZQoaAZHQHJLVvuPV/doB0vcaAhHQKk1mGs3hn91fZQoaAZHQHDvIBFNL15oB0vnaAhHQKk2PyjHn2Z1fZQoaAZHQG/AAqmTC+FoB0vGaAhHQKk20hf0Eox1fZQoaAZHQFIAiZv1lGxoB0uIaAhHQKk3NwcYIjZ1fZQoaAZHQFEHVB2OhkBoB0uYaAhHQKk5AaNMoMN1fZQoaAZHQG7nP/JeVs1oB0vUaAhHQKk5re67NB51fZQoaAZHQG38KGcnVoZoB0viaAhHQKk6VSJCSid1fZQoaAZHQHDVXNcGC7NoB0vYaAhHQKk6+qRU3n91fZQoaAZHQHDAE4NqgyxoB0vUaAhHQKk7kvM8ox51fZQoaAZHQGixiyhSLqFoB03oA2gIR0CpPnzoEB8ydX2UKGgGR0BnUMYZVGTcaAdN6ANoCEdAqULYljVhC3V9lChoBkdAcfcZ8rqdH2gHS9hoCEdAqUN5KODJ2nV9lChoBkdAcepBAOavzWgHS9VoCEdAqUQWZAprlHV9lChoBkdAby5Gza9K3GgHS89oCEdAqUSti8WbgHV9lChoBkdAcKrZowmE5GgHS9poCEdAqUVTI/7iynV9lChoBkdAcOk5c1O0s2gHS+xoCEdAqUYBAdGRWHV9lChoBkdAcd8DmKZUk2gHS8JoCEdAqUfxAQg9vHV9lChoBkdAcYD85jpcHGgHS8poCEdAqUiDXjENv3V9lChoBkdAcevdPLxI8WgHS91oCEdAqUlqP8yeqnV9lChoBkdAcnbVk+X7cmgHS9VoCEdAqUoyuEEkjXV9lChoBkdAUwRIH1OCXmgHS69oCEdAqUrOzposZ3V9lChoBkdActlmgam4zGgHS8FoCEdAqUuQlUp/gHV9lChoBkdActqmapgkT2gHS+JoCEdAqUx5a1TisHV9lChoBkdAcfG1G9YfXGgHS8JoCEdAqU1JB7eEZnV9lChoBkdAcrBCyyD7ImgHS9toCEdAqU40078vVXV9lChoBkdAcc8EGqxTsWgHS8BoCEdAqU7cfozN2XV9lChoBkdAcjQDXOGCZmgHS99oCEdAqVDuapgkT3V9lChoBkdAcO/NmUW2w2gHS+VoCEdAqVGxGBnSOXV9lChoBkdAbwkqmTC+DmgHS+hoCEdAqVJh/I8yOHV9lChoBkdAb0JmWdEsrmgHS/hoCEdAqVMbHlwLmnV9lChoBkdAcotZKWcBl2gHS9hoCEdAqVO+CsfaH3V9lChoBkdAcgVlcQiA2GgHS9FoCEdAqVRYOlO45XV9lChoBkdAcYzTFERao2gHS+NoCEdAqVUAaWHDaXV9lChoBkdAc3ue7cwg1WgHS8doCEdAqVWYpQUHp3V9lChoBkdAcIGF+d9Uj2gHS85oCEdAqVYugnMMZ3V9lChoBkdAcSZpSaVlgGgHS+poCEdAqVgmyzHCGnV9lChoBkdAcUq+A3DNyGgHS9poCEdAqVjIsEq2B3V9lChoBkdAcPVre67NCGgHS8ZoCEdAqVlbxEv0y3V9lChoBkdAckfY7JW/8GgHS+1oCEdAqVoMnAqNInV9lChoBkdAcY3t/nW8RWgHS9toCEdAqVqsQVbiZXV9lChoBkdAcsRQokRjBmgHS/VoCEdAqVtjr7fpEHV9lChoBkdAbfpV2icoY2gHS9JoCEdAqVwCX+l0o3V9lChoBkdAch6GnGbTdGgHS8NoCEdAqVyQL3K0U3V9lChoBkdAc1UvkzXSSmgHS9NoCEdAqV0zJ8v25HV9lChoBkdAcDaTTfBN22gHS9RoCEdAqV8eDJ2dNHV9lChoBkdAcHilWwNb1WgHS9JoCEdAqV/EvkBCD3V9lChoBkdAb0XuIhyKemgHS8ZoCEdAqWBYXKr7wnV9lChoBkdAck1bNKRMe2gHS8VoCEdAqWDsc4o7WHV9lChoBkdAcrIaS9ugpWgHS89oCEdAqWGG3QUpNXV9lChoBkdAci+CQLeANGgHS/ZoCEdAqWJES/TLGXV9lChoBkdAcacY/3WWhWgHS8poCEdAqWMHo5ggHXV9lChoBkdAcvLWt2cJ+mgHS+BoCEdAqWPcD2alUXV9lChoBkdAch49MsYl6mgHS9NoCEdAqWSe/8EV33V9lChoBkdAcdnddE9dNWgHS/hoCEdAqWWc1l5GBnV9lChoBkdAcmpj/MnqmmgHS8toCEdAqWhYlSjxkXV9lChoBkdAcL/YgJTl1mgHS+doCEdAqWkzCJoCdXV9lChoBkdAcujbyH2ys2gHS+loCEdAqWneD3/PxHV9lChoBkdAcZau5BkZrGgHS+NoCEdAqWqJamoBJnV9lChoBkdAb2fOX3QD3mgHS9poCEdAqWsnJ3gUDnV9lChoBkdAcc+tHQQcxWgHS81oCEdAqWvAwh4dIXV9lChoBkdAceE5hBqsVGgHS7JoCEdAqWxHXsgMdHV9lChoBkdAcS7fAsTWXmgHS8toCEdAqWzd/QSi/XV9lChoBkdAc83FCLMs6WgHS+9oCEdAqW2Q3aSLZXV9lChoBkdAbpJ8l5WzW2gHS8poCEdAqW4iih37lHV9lChoBkdAcIhx2St/4WgHS9toCEdAqXAHnB+F13V9lChoBkdAcv6P9kz412gHTQkBaAhHQKlwzZ7ojfN1fZQoaAZHQHJx7fxc3VFoB0vdaAhHQKlxbuv2XcB1fZQoaAZHQFLIDD0lJH1oB0ugaAhHQKlx4yY5T611fZQoaAZHQHDqXn2ZiNNoB0vnaAhHQKlykbIcR151fZQoaAZHQHIj05p8F6loB0vmaAhHQKlzPWrfcet1fZQoaAZHQG+atr9ETg5oB0vaaAhHQKlz3RLK3d91fZQoaAZHQHBKxoqTbFloB0vcaAhHQKl0gq//Nqx1fZQoaAZHQHFSOXNTtLNoB0vpaAhHQKl1LukUKzB1fZQoaAZHQHB9yV0Lc9JoB0vFaAhHQKl3Dv7WNFV1fZQoaAZHQG5pGw7kn1FoB0vdaAhHQKl3tI1+AmR1fZQoaAZHQHCkG/ag261oB0vVaAhHQKl4UbT+ee51fZQoaAZHQHKi1TisGPhoB0vyaAhHQKl5BooNNJx1fZQoaAZHQHHrN/z8P4FoB0vHaAhHQKl5nqv/zat1fZQoaAZHQHAOYuTRplBoB0v/aAhHQKl6WRnvlU91fZQoaAZHQHLN/Dxb0OFoB0vkaAhHQKl7AeT3Zf51fZQoaAZHQG/loIWxhUloB0vWaAhHQKl7nUvPC2t1fZQoaAZHQHLaSUTtb9toB0u3aAhHQKl8I5WBBiV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4155, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.97, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 78, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}